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Stretch-induced network reconfiguration
of collagen fibres in the human facet
capsular ligament

Sijia Zhang1, Danielle S. Bassett1,2,† and Beth A. Winkelstein1,3,†

1Department of Bioengineering, 2Department of Electrical and Systems Engineering, and 3Department of
Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA

Biomaterials can display complex spatial patterns of cellular responses to

external forces. Revealing and predicting the role of these patterns in material

failure require an understanding of the statistical dependencies between

spatially distributed changes in a cell’s local biomechanical environment,

including altered collagen fibre kinematics in the extracellular matrix. Here,

we develop and apply a novel extension of network science methods to inves-

tigate how excessive tensile stretch of the human cervical facet capsular

ligament (FCL), a common source of chronic neck pain, affects the local reor-

ganization of collagen fibres. We define collagen alignment networks based

on similarity in fibre alignment angles measured by quantitative polarized

light imaging. We quantify the reorganization of these networks following

macroscopic loading by describing the dynamic reconfiguration of network

communities, regions of the material that display similar fibre alignment

angles. Alterations in community structure occur smoothly over time, indicat-

ing coordinated adaptation of fibres to loading. Moreover, flexibility, a measure

of network reconfiguration, tracks the loss of FCL’s mechanical integrity at

the onset of anomalous realignment (AR) and regions of AR display altered

community structure. These findings use novel network-based techniques to

explain abnormal collagen fibre reorganization, a dynamic and coordinated

multivariate process underlying tissue failure.
1. Introduction
The structural integrity of biomaterials depends on complex interactions

between the individual material components and their surroundings. At the

extreme of the loss of such integrity, the tissue can fail, but the more subtle

tissue responses that occur in the macroscopic subfailure regime are also critical

in the pathomechanisms of physiological dysfunction. The cervical facet capsu-

lar ligament (FCL) is a quintessential example material in which the subfailure

tissue responses have an important physiological impact, even in the absence of

macrostructural failure. The FCL is innervated by nociceptive neurons that are

responsible for pain sensation [1–3]. Excessive FCL stretch, which can occur

during neck trauma, can activate the nociceptive pain fibres embedded in the

collagen matrix of the FCL [1,3,4]. The mechanisms by which FCL stretch

induces pain are believed to depend on the kinematics and kinetics of the

local collagen fibre matrix, which under normal physiological circumstances,

can accommodate macroscopic tissue deformations via local fibre motion and

matrix reorganization [5–7]. However, some FCL loading conditions can

result in collagen disorganization and microstructural injury [4–6,8]. Despite

growing evidence supporting this notion, collagen fibre kinematics during

FCL loading and the ability to predict the relationships between those

responses and tissue injury are still not well understood.

The reconfiguration of collagen fibres during FCL loading can be character-

ized as either normal or anomalous. Anomalous collagen fibre realignment

occurs when local fibre directions change significantly more than expected in

the majority of the tissue, redistributing forces after the load-bearing fibres have
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failed [5,6]. Anomalous fibre realignment is an important predic-

tor of tissue injury; it is associated with the occurrence of altered

mechanical properties, occurs prior to any visual signs of tissue

rupture [5,6] and predicts the location of eventual tissue failure

[5,6,8]. Fibre realignment during loading has been measured

empirically using dynamic quantitative polarized light imaging

(QPLI) to generate a sequence of spatial maps of collagen fibre

alignment over time [6,8,9]. Prior studies have demonstrated

the feasibility of using QPLI to accurately assess collagen fibre

alignment in human cervical FCLs [5,8,10–12]. The correlations

between alignment vectors over time have previously been used

to define regions of anomalous fibre realignment, which enables

accurate quantitative and spatial measurements of changes in

collagen fibre orientation [5]. Yet, this detection technique and

existing image-based computer models capture tissue damage

at the single pixel or fibre level [5,7,8], and so remain naive to

any larger-scale collective realignment of fibre groups as they

adapt to FCL loading. As such, it is not known if, and to what

extent, the collagen matrix displays spatially extended domains

whose changes during macroscopic loading may affect, or relate

to, the mechanical behaviour of ligamentous tissues. Under-

standing changes in mesoscale collagen fibre networks can

improve the detection and prediction of local tissue failure,

because the eventual rupture of collagenous tissue involves

damage to collagen fibre bundles and/or a large number of dis-

tributed collagen fibres in domains greater than several fibres in

the microscale [13–15].

The understanding of collagen realignment has been ham-

pered by the lack of analytical methods to probe the collective

coordination of realignment across many spatially distributed

fibres. Here we suggest that the complexity of this coordinated

multivariate process can be successfully captured using tools

from the field of network science [16]. Networks provide a

useful representational framework to systematically examine

the topological characteristics and the dynamics of complex

systems [17–19]. System components are represented as net-

work nodes and their relationships with one another are

represented as network edges [20,21]. In many biological

[19,22,23] and material [24,25] systems, this formalism reveals

important organizational changes that impact the system’s

underlying structure and resulting function. For example,

network-based tools known as community detection techniques
can be used to characterize the presence and organization of

local geographical domains in non-biological materials [24–26]

which are referred to as network communities or modules.

These domains constrain sensitivity to mechanical perturbations

in the form of acoustic signals [24] and track alterations in

material topology as a function of applied force (pressure) [25],

indicating their broad sensitivity to material microstructure.

Here, we investigated the effects of the stretch-induced

microscopic fibre movements on the mesoscale organization

of local collagen networks in relation to FCL mechanics using

tools from network science. We defined collagen networks

based on the similarity in fibre alignment directions acquired

using QPLI during FCL loading, and applied novel com-

munity detection techniques [27] to probe organizational

changes that may be due to anomalous realignment (AR) of

fibres. We summarized the temporal evolution of the networks

using diagnostics such as modularity (which measures the

presence and strength of time-dependent communities) and

flexibility (which measures the reconfiguration of commu-

nities) [27,28]. We then compared dynamic properties of the

network architecture between regions with AR and regions
with normal realignment (NR) in the FCL, and investigated

their associations with macroscopic tissue mechanics. We

hypothesized that regions with AR are associated with greater

changes in the collagen network structure than regions with

NR, and that network disorganization contributes to the loss

of tissue mechanical integrity, both of which are detectable

using the community detection technique. The successful

implementation of these graph-theoretic techniques on collagen

networks can have broader impact in quantifying the organiz-

ation and defining the structure–function relationships of

other fibrous connective tissues and heterogeneous materials.
2. Material and methods
2.1. Collagen alignment and macromechanics in human

facet capsular ligament tissue
Collagen fibre alignment data and mechanical data of the human

cervical FCLs were obtained previously during loading using a

system that integrates QPLI with a tensile testing device [5]. In

this study, we included only those specimens (n ¼ 7; age 63+
15 years; two females) in which AR was detected with sufficient

light transmission by a previously defined vector correlation

analysis [5]. Briefly, the central region of the ligament surface

of each human C4/C5 FCL sample was labelled with a grid of

fiduciary markers dividing it into subregions (figure 1a). QPLI

data were acquired with a 12.5 pixel mm21 resolution in the

unloaded reference position with the ligament under 5 kPa of

pre-stress, and also during continuously applied uniaxial

tensile distraction until tissue failure. Continuous collagen fibre

alignment maps were generated at 0.04 s increments. Both the

forces and displacements during tensile loading were acquired

at 1 kHz by an Instron testing machine and its Bluehill software

(Instron Corporation, Norwood, MA). Stress was also measured

for each specimen throughout loading using the recorded force

data and that specimen’s cross-sectional area when unloaded.
2.2. Network construction
For each specimen, we created two rectangular regions of interest

(ROIs) including (i) a region with anomalous fibre realignment

and (ii) one with normal realignment (figure 1a) based on previous

work using similar regions as mesh elements for strain field calcu-

lations [5,8]. Tissue strains, such as the principal Lagrangian

strains, have been used previously to define the response thresholds

of soft tissues to external loading; strain thresholds have been

defined for FCL’s yield and failure, and for nociception from the

FCL prior to visible tissue rupture [6,8,29–32]. However, most

tissue strains measured in earlier studies are macroscopic and lack

the resolution to detect microscopic tissue damage in subfailure con-

ditions. Therefore, techniques that detect collagen fibre realignment

have been developed to identify the majority of the mesh elements

that sustain only the expected amount of fibre reorganization and a

few regions that contain excessive collagen disorganization [5].

ROIs were selected based on those predetermined locations of

normal and anomalous realignment that indicate microstructural

tissue injury. The NR ROIs were chosen uniformly at random

from the set of all normally realigned regions with sufficient, but

not excessive, light transmission. Because fibre reorganization is

the only criterion for the selection of ROIs, the group of normal re-

alignment includes regions that are both adjacent to and distant

from the anomalously realigned regions, and includes regions

that both eventually developed visible rupture and regions that

did not rupture. For anomalous realignment regions, we chose

ROIs that exhibited the most anomalous realignment but did not

sustain the maximum principal strain (MPS) of the ligament to

http://rsif.royalsocietypublishing.org/
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Figure 1. Network construction using QPLI data. (a) QPLI images obtained before and during loading were used to generate pixel-wise collagen alignment maps in
the selected ROIs of anomalous realignment (AR; red box) and normal realignment (NR; blue box) at rest, at the onset of anomalous realignment, and in between
those two time points at 1 s increments. Rectangular ROIs were defined using the upper left and lower right fiduciary markers as the common information between
different time points. Network nodes were defined as 3 � 3 pixel windows in the ROIs at rest. Representative 3 � 3 pixel windows are shown at the resting and
the stretched states, with corresponding demonstration of alignments. Network edges were established based on the difference in alignment angles between nodes.
Weighted networks were constructed by thresholding and scoring the connection strength from 1 to 10. Connectivity matrices, with nodes numbered spatially,
display the pairwise connectivity strength. (b) Schematic of multilayer networks in which consecutive time windows were connected by linking each node to
itself for real networks (top) or linking nodes randomly to create permuted networks as nodal null models (bottom). (Online version in colour.)
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represent collagen networks with the most detectable microscopic

damage. Among all of the samples that we examined, only one of

the 17 regions of anomalous fibre realignment overlapped with the

location of the sample’s MPS, suggesting a disconnection between

tissue strain and fibre realignment measures [5]. Therefore, in order

to decompose the effects of ligament strain and anomalous fibre

realignment on tissue response to injurious loading, in this study,

we evaluated only AR regions that displayed no co-localization

with MPS.

Within each ROI, we generated fibre alignment maps using

QPLI acquired at 1 s increments during the FCL distraction

from the unloaded pre-stressed resting position to the stretched

position at the onset of anomalous fibre realignment that was

determined for that specimen (figure 1a). The nodes of the

collagen networks were defined as non-overlapping 3 � 3 pixel

windows in each ROI at the resting state, in order to decrease

the sensitivity of the fibre orientation measurement to the

random noise present at single pixels. Eight-pixel connectivity

has been used to eliminate random noise when defining the

occurrence of anomalous realignment [5]. In ROIs at the stretched

positions, we defined network nodes based on the nodal con-

figuration from the resting state. That is, we use the same

number of nodes in each row and each column as in the resting pos-

ition in order to generate networks with identical numbers of

nodes before and during loading, a feature necessary for a fair

comparison of network properties [33].

We defined the mean alignment direction in each window as

the average of the fibre orientation angles within one standard

deviation of all angles in that 3 � 3 pixel window. Using one

standard deviation, we removed on average two pixels from

the 3 � 3 pixel window that were farthest from the mean align-

ment direction. This approach minimized outliers [34] owing to

fibre alignment measurement from aberrant pixels, but remained

sensitive to the main alignment direction represented by a

majority of fibres in each widow. Two nodes were considered

‘connected’ by a network edge if the difference in the mean align-

ment direction of the two nodes was less than 908. We assigned
integer weights to each edge from 1 (a difference of up to 100% of

the 908) to 10 (a difference of less than 10% of the 908), such that

smaller differences (greater similarity in mean alignment direc-

tions) weighed more (figure 1a). For instance, the edge between

two nodes whose difference in mean alignment direction was smal-

ler than 98 was given a weight of 10 (i.e. strongest connection),

whereas the edge between two nodes whose difference in mean

alignment direction was between 818 and 908 was given a weight

of 1 (i.e. weakest connection). This integer weighting scheme is

consistent with our confidence in the measured angles produced

by the QPLI measurement, where a 98 polarizer step exists between

each QPLI image collected during data acquisition [5,6,8].
2.3. Static community detection and network
visualization

Our goal was to understand differences in the stretch-induced net-

work organization in both regions of the FCL using networks

measured in the unloaded condition in comparison with networks

measured at the onset of anomalous fibre realignment in the FCL. To

quantify network organization, we performed static community

detection (a form of clustering for networks) by optimizing a

modularity quality function [35] using a Louvain-like locally

greedy algorithm [36]. In this approach, modules are defined as

sets of nodes that are more highly interconnected than expected in

an appropriate statistical null model [21,36]. The modularity

index, which is optimized over different configurations that

compartmentalize the network into modules, quantifies how well

a network is segregated into modules (see appendix for mathemat-

ical details). Because of the near degeneracy of the modularity

landscape [37], we optimized the modularity quality function 100

times and constructed a consensus partition for each network at

the resting state and for each network at the onset of anomalous re-

alignment, separately for both region types (AR and NR) in each

specimen. To quantify how well the network was segregated into

modules, we calculated the modularity using the consensus

http://rsif.royalsocietypublishing.org/
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partition for each state (resting and onset of anomalous realignment)

and region (AR and NR). To determine the statistical significance of

these modularity values, we constructed commonly used compara-

tive benchmark networks by rewiring each collagen network 20

times while preserving (i) the number of nodes, (ii) the number of

edges and (iii) the degree distribution (the degree of a node is defined

by the number of connections emanating from that node). In this

way, we constructed 100 benchmark null models and acquired an

optimized modularity value from each null model. We computed

the mean modularity over those 100 benchmark networks, and

compared this value with that observed in the real network.

We visualized community structure in collagen networks

using the software package MATLAB (R2014a, The MathWorks

Inc., Natick, MA). The Fruchterman–Reingold algorithm [38]

determined the placement of communities for each network,

and the Kamada–Kawai algorithm [39] determined the location

of nodes within a community [40].

2.4. Dynamic community detection and tissue
mechanics

We next investigated the evolvability of the collagen network and

its relationship to changes in the mechanical responses of the FCL

during loading using dynamic community detection. We evalu-

ated the dynamic modular structure on multilayer networks

created by linking nodes between consecutive time steps [27]

(figure 1b). Layers in the multilayer network represent time win-

dows that are 1 s apart, starting from the baseline resting state

and continuing through to the first detection of anomalous fibre

realignment. In a multilayer network, identity links connect

nodes in a given time window to themselves in the previous and

subsequent time windows (figure 1b). We optimized the multilayer

modularity index over partitions of nodes into communities over

time [27]. After performing this optimization 100 times, we deter-

mined a consensus partition using the method outlined in

reference [41]. To quantify statistical significance, we constructed

100 nodal null model networks for each real network by permuting

the interlayer connections uniformly at random [28] (figure 1b). To

describe the evolution of communities in collagen networks during

loading, we calculated four diagnostics: the multilayer modularity

index, the number of modules, stationarity [28] and flexibility [28]

(see appendix for mathematical definitions). We compared the

values of these four diagnostics estimated in the real networks to

the mean values of the same diagnostics averaged over the set of

100 nodal null model networks constructed for each real network.

We also assessed the differences in network diagnostics between

the AR and NR regions to investigate the relationships between

anomalous fibre realignment and dynamic properties of the

community structure of the tissue.

To study the associations between dynamic features of

the local collagen networks and tissue mechanics, we used

linear regression to measure the correlations between the net-

works’ flexibility and the forces and stresses generated in the

tissue at the onset of anomalous realignment.

2.5. Software and statistics
All computations and statistical tests were performed using

MATLAB and JMP (v. 11, SAS Institute). We implemented the net-

work computations using a combination of the Brain Connectivity

Toolbox [20], community detection code [42] and in-house soft-

ware for stationarity, flexibility, consensus partitions and nodal

null models [27,28].

We used paired t-tests to test the differences in modularity

and the number of modules before and after stretch in AR and

NR regions, and between real and randomized networks, both

of which were further verified using non-parametric permutation

tests. For the case of dynamic community detection on multilayer
networks, we computed the differences in the four network

diagnostics (modularity, number of modules, stationarity and

flexibility) between real networks and nodal null models. We

tested whether these differences were significantly different

from zero using a one-sample t-test. Paired t-tests evaluated the

differences in network diagnostics between the two regions of

the FCL (AR and NR). Significance of the regression of FCL

force and stress against flexibility was tested using an f-test.

Significance was tested against a ¼ 0.05.
3. Results
We investigated changes in modular organization at the onset

of anomalous fibre realignment in relation to the respective

resting state. Anomalous realignment is defined as substan-

tially more fibre reorganization of local collagen networks

relative to the normal realignment and occurs to accommo-

date force redistribution caused by failure of the load-

bearing fibres. Community detection was performed on

four groups of weighted, undirected collagen fibre alignment

networks, including AR regions at the resting and stretched

states, and NR regions at the resting and stretched states. Net-

works of AR and NR regions had similar sizes: 39.4+ 7.4

nodes and 39.7+ 4.5 nodes, respectively; the two network

sizes were not statistically different from one another ( p ¼
0.924; t ¼ 20.099) as tested using a two-sample t-test.

3.1. Static modular structure
We first evaluated collagen network reconfiguration at the

onset of anomalous realignment with respect to the resting

position in both regions with anomalous realignment and

regions with normal realignment using community detection.

Regions with anomalous fibre realignment exhibited heigh-

tened modular structure in the resting state compared with

the state in which the ligament was stretched. Specifically,

AR regions displayed decreases in both the modularity

(paired one-tailed t-test: p ¼ 0.030; t ¼ 22.284) and the

number of modules ( p ¼ 0.015; t ¼ 22.828) after loading

compared with rest (figure 2a). We observed no difference in

NR regions after loading compared with rest (figure 2b).

These results suggest that more robust collagen fibre reorienta-

tion altering the network architecture occurred during loading

in regions sustaining more evident local fibre damage.

To test if the difference in AR regions between rest and

the onset of anomalous fibre realignment was driven by

node-level changes, we evaluated the relationships between

node degree and modularity. We measured the unweighted

node degree defined as the mean number of connections

per node, and assessed the weighted node degree as a measure

of the nodal connection strength. We found significant increases

in the unweighted (paired one-tailed t-test: p ¼ 0.017; t ¼ 2.732)

and weighted ( p ¼ 0.007; t¼ 3.469) node degrees at the onset of

anomalous realignment with respect to rest in the anomalous

realignment regions. Both the unweighted (R ¼ 20.471; p ¼
0.011; F ¼ 7.41; degree of freedom (d.f.) ¼ 26) and the weighted

(R ¼ 20.642; p ¼ 0.0002; F ¼ 18.2; d.f.¼ 26) node degrees dis-

played significant negative correlations with modularity, as

evident from f-tests (see also the electronic supplementary

material, figure S1).

To further examine the contribution of the node degree to

changes in the modular structure, we fixed the unweighted

node degree of the stretched networks to be the same as

http://rsif.royalsocietypublishing.org/
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that of the resting-state networks by preserving the stron-

gest connections. As a result, we can no longer detect any

statistical differences in modularity or weighted node

degree between the resting and the stretched networks for

either the AR or NR regions (electronic supplementary
material, figure S2). These findings indicate that nodal-level

changes play an important role in shaping the modular

structure of the collagen network during FCL loading.

We next investigated whether the collagen network dis-

played any topological alterations from rest to the onset of

http://rsif.royalsocietypublishing.org/
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anomalous realignment. We compared the network structure

at rest and the onset of anomalous realignment in both the

anomalous realignment and NR regions to their respective

null model networks with the same node degree as the col-

lagen network but otherwise random organization. Only

anomalously realigned regions under stretch showed similar

modularity and number of modules as null model networks,

whereas the other three networks (AR region at rest, NR

region at rest and NR region at the onset of anomalous

realignment) exhibited significantly heightened ( p , 0.035;

jtj . 2.205) modular structure in comparison with null model

networks as tested using paired one-tailed t-tests. The

decreased modularity and the number of modules that were

comparable to random levels in the anomalously realigned

region after stretch was likely driven by an increase in the

number of intermodular connections as the alignment direc-

tions became more similar between modules after loading

(figure 2c). Because modules are defined as highly intracon-

nected clusters, increasing the intermodular links weakens

the compartmentalization of the network into different com-

munities and thus decreases the modularity. The shift in

network structure observed in the AR regions from highly

modular to random in comparison with null model networks

with the same nodal degree suggests that complex topological

alterations existed at the local network domain, which cannot

be captured by single nodes or pixels.
3.2. Dynamic modular structure
We investigated how local collagen networks evolve and

reorganize over time from rest to the onset of anomalous

realignment by performing dynamic community detection

on multilayer networks that represent the collagen network

configuration at different time points. Dynamic community

detection on multilayer networks revealed that the collagen

network reorganized smoothly and adaptively over time.

For both of the AR and NR regions, collagen fibre networks

exhibited significantly higher modularity ( p , 0.013; t .

3.493) than the null model as tested using one-sample t-tests

(figure 3), indicating the presence of long-lasting modules that

reflect coordinated fibre movements. In comparison with

dynamic null model networks in both the AR and NR regions,

we found a significant increase in stationarity, which measures

the maintenance of nodal composition of modules over time

(one-sample t-test: p , 0.004; t . 4.671); we also found a signifi-

cant decrease in flexibility, which characterizes the altered nodal

allegiance to modules, ( p , 0.004; t , 24.611), indicating a
smooth temporal transition between the resting and the

stretched states (figure 3). We observed no difference in the

number of modules between the real and null model networks

(figure 3). Together, these findings suggest coordinated realign-

ment of fibres to smoothly adapt to macroscopic ligament

loading.

3.3. Regional differences in flexibility
To examine if, and how, dynamic features of local collagen net-

work reconfiguration exhibit regional differences and play a

role in modulating the macroscopic mechanical behaviours

of the ligament, we tested for differences in the flexibility of

AR and NR networks, and we evaluated relationships

between FCL mechanics and network flexibility in both AR

and NR regions. Differences in flexibility and its relationships

to FCL mechanics were found in regions with and without

anomalous realignment. Flexibility was significantly increased

( p ¼ 0.029; t ¼ 2.339) in the AR regions compared with the NR

regions in the same sample as tested by a paired one-tailed t-
test (figure 4a). Significant correlations between the flexibility

of the NR regions and each of the stress (R ¼ 0.890; p ¼ 0.007;

F ¼ 19.1; d.f. ¼ 5) and force (R ¼ 0.877; p ¼ 0.010; F ¼ 16.6;

d.f. ¼ 5) developed in the FCL were observed using linear

regression with f-tests; whereas, although trending the same

as the NR regions, AR regions showed no association between

flexibility and either the FCL stress or force (figure 4b,c). Larger

differences in flexibility between the AR and NR regions

occurred in samples that produced lower stresses and forces

at the onset of anomalous fibre realignment (figure 4b,c).

These flexibility-related regional differences suggest that

abnormal reorganization of collagen networks over time

may contribute to the mechanical injury events that occur at

the first detection of anomalous realignment, which were

associated with the impaired mechanical integrity of the FCL.
4. Discussion
Collagen fibre realignment is a possible mechanism that trans-

mits force from macroscopic FCL loading to deform and

activate pain fibres embedded in the collagen matrix. This

study used analytical tools from the field of complex systems

to investigate the stretch-induced collagen reorganization in

the human FCL, as an example of a biological material whose

loss of structural integrity may lead to changes in tissue mech-

anics and cellular responses [4,43]. Fibre alignment maps

generated using QPLI were converted into weighted collagen

http://rsif.royalsocietypublishing.org/
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alignment networks based on similarity in fibre alignment direc-

tions. Community detection methods revealed differences in the

modular structure of the constructed collagen networks before

and after tensile loading in regions with previously identified

anomalous fibre realignment leading to tissue failure

(figure 2). Specifically, regions with anomalous fibre realign-

ment, but not regions with normal realignment, exhibited

significantly decreased modularity, which was no longer differ-

ent from that of the null model network, at the onset of atypical

fibre realignment compared with the resting state (figure 2).

Dynamic community detection on multilayer temporal net-

works from rest to the onset of anomalous realignment

uncovered significantly heightened modular structure with

higher stationarity and lower flexibility in the real collagen net-

works with respect to dynamic null model networks in both AR

and NR regions (figure 3), suggesting a smooth and adaptive

process of network reorganization during loading. Significant

increases in flexibility and loss of correlation between flexibility

and FCL mechanics were found in the AR regions compared

with NR regions (figure 4), providing evidence of the contri-

bution of local collagen network reorganization to impaired

mechanical integrity of the ligament observed at the onset of

anomalous fibre realignment.

Here, we have shown network analysis to be a valid method

to analyse collagen fibre networks. We demonstrated that regions

with anomalous fibre realignment correspond to more evident

stretch-induced changes than regions with normal reorganiz-

ation, consistent with findings based on vector correlation [5,6].

In comparison with prior studies of fibre realignment that largely

identified fibre or pixel-level changes [6–8,11], network-based

methods provide novel access to regional differences in collagen

networks’ responses to FCL loading. Moreover, this approach

provides us new diagnostic variables to characterize the coordi-

nated movement of fibres over time that is evident in the

evolution of mesoscale collagen networks. Critically, these

tools bridge the features of microscopic tissue injury to the

large-scale impairments of macroscopic mechanical integrity.
4.1. A stretch-induced decrease in modularity
The finding that local collagen networks of the FCL are modu-

lar at rest (figure 2) is consistent with previously reported FCL

morphology. Macroscopic and microscopic investigations have
revealed that human FCL is composed of irregular connective

tissues and parallel bundles of collagenous fibres that run in

different directions [2,44]. In the inferior region of the joint,

the fibres run in a superior-medial to inferior-lateral direction,

whereas in the superior and middle part of the joint, the fibres

cross the joint space in the medial-to-lateral direction [44]. This

well-organized fibre orientation composed of more than one

preferred alignment direction in the FCL is expected to provide

heightened modular structures in the collagen networks than

random networks as shown using static community detection.

Modularity decreased from rest to the onset of anomalous

fibre realignment only in regions that developed atypical

fibre reorganization (figure 2). Increases in the mean node

degree and average connection strength are potential drivers

of the decrease in modularity, as quantitatively confirmed by

the significant negative correlations between modularity and

both weighted and unweighted average node degrees (elec-

tronic supplementary material, figure S1). Thresholding the

stretched collagen networks to decrease the number of connec-

tions to the resting level while preserving the strongest

connections eliminated the difference in modularity between

the resting and the stretched states (electronic supplementary

material, figure S2), suggesting that loading-induced generation

of substantially more weak connections in regions sustain-

ing anomalous fibre realignment plays an important role in

collagen network reorganization towards the injury state.

The modular structure of the collagen network at rest was

disrupted during stretch of the FCL and underwent a transi-

tion to random topology in the regions with anomalous fibre

realignment (figure 2). Tensile stretch is known to realign col-

lagen fibres towards the direction of loading [45,46], which is

anticipated to decrease the angle differences between collagen

bundles aligned in different directions. Substantial fibre

realignment with decreasing angle differences during tensile

loading can lead to an increase in intermodular connections

at the network scale and can result in altered topology,

which was qualitatively supported by visualization of the

network (figure 2c). The structural shift from the modular to

random architecture is likely driven by complex topological

changes rather than simply an increase in the node degree;

collagen networks before and after stretch were both compared

quantitatively with their respective null model networks

with the same node degree, but exhibited different

http://rsif.royalsocietypublishing.org/
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structural features. It is important to understand the topologi-

cal contributions to the altered network architecture, because

network-level abnormality may be more detectable and

more related to mechanical changes in the macroscale than

nodal-level changes.
ietypublishing.org
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4.2. Dynamic fibre reorganization during loading
Resolving how external loading regulates cellular behaviours

is often confounded by dynamic collagen fibre reorganization

in the extracellular matrix. Defining the time-dependent fibre

kinematics continues to become more feasible due to advanc-

ing imaging techniques and computational models [5,7,9,47].

Yet, quantification of coordinated reorganization across

spatially distributed fibres over time in real human tissue

remains a challenge owing to a lack of analytical tools. In this

study, we addressed this challenge using graph-theoretical

tools—particularly dynamic community detection of collagen

networks—to explore the temporally evolving network archi-

tecture of this biological material. Higher stationarity, lower

flexibility and heightened modular structure of dynamic col-

lagen networks compared with dynamic network null models

indicate the existence of enduring modules, which implies that

collagen fibres collectively and smoothly adapt to FCL loading

in a coordinated manner. This stretch-induced adaptive realign-

ment of collagen fibres may modulate mechanical behaviours of

the FCL as well as other tissues with complex geometry and

anatomy, because collagen fibre realignment contributes to the

inhomogeneity and nonlinear stress–strain relationships of

the material [48].

Mechanical injury events, including material yield or partial

failure indicated by a sudden decrease in force with increasing

displacement, occurred at the first detection of anomalous re-

alignment for every specimen [5,8]. In addition to those

observations at the onset of anomalous realignment, a corre-

lation between tissue forces and flexibility was found only in

the NR regions, but not in the AR regions, at the first occur-

rence of tissue yield and visible rupture that occurred before

and after the first detection of atypical reorganization (elec-

tronic supplementary material, figure S3). At the eventual

gross failure, no correlation was detected between tissue

forces and the flexibility measured in either the NR or AR

regions (electronic supplementary material, figure S3). The

loss of association between FCL mechanical properties and

flexibility that occurred before failure in anomalously realigned

regions (figure 4) suggests that dynamic changes of mesco-

scopic collagen networks may contribute to the subfailure

impairment of mechanical integrity at the tissue level. The

relationships that we found between collagen fibre realignment

and the mechanical parameters of the ligament imply a struc-

ture–function correlation in the FCL. Anomalous fibre

realignment develops at strains significantly lower than those

at rupture and predicts the region of visible failure [5]. Because

significant differences in flexibility were observed between AR

and NR regions from rest to the onset of anomalous realign-

ment, flexibility may be used as a predictor of microstructural

abnormality that may lead to eventual ligament failure.

Fibre alignment-based measurements to detect subfailure

tissue damage likely have higher sensitivity than the bulk

strain measurements. Fibre strains in computationally mod-

elled fibrous networks during uniaxial tensile loading can

vary spatially and exceed the applied bulk strain depending

on the fibre orientation [49]. The cascade of fibre failure,
load redistribution and reorientation of intact fibres that

leads to anomalous realignment at the microscale can be com-

plex and non-uniform, particularly considering the structural

heterogeneity of the FCL. Therefore, those microscopic changes

may not directly align with macroscopic strain measurements.

However, the more precise measurements of altered tissue

structure instead provide higher resolution to probe tissue

impairment in the subfailure regime. In addition, macroscopic

tissue strains were typically measured in two-dimensions with

surface markers, whereas the QPLI technique captures the

average fibre alignment response along the third dimension

of the tissue’s thickness. Because the FCL is non-uniform

through its thickness, alignment-based measurements, such

as flexibility, may indeed be more predictive of tissue

damage and failure than two-dimensional strains.

4.3. Potential application to other materials
This is the first study, to the best of our knowledge, applying

graph-theoretical analysis to examine the structural reconfi-

guration of biological materials. We applied community

detection in particular to investigate dynamic collagen fibre

reorganization during loading of the human FCL. In addition

to the FCL and other capsular ligaments, a variety of other

load-bearing tissues in the musculoskeletal system experience

collagen reorganization during development, injury and

healing [50–52]. Biological soft tissues such as cardiovascular

tissue, liver tissue and skin, are also subjected to complex

external loading and internal cellular stresses and undergo

collagen remodelling in diseased and healing conditions

[53–55]. All of those biological systems, which also involve

collagen reorganization, could be studied using the graph-

theoretical methods introduced here to define dynamic

features of this complex multivariate process.

However, the use of network analysis techniques is not

limited to natural materials; it could be extended to character-

ize microstructural reorganization in hydrogels for tissue

engineering applications [49,56,57] and to examine dynamic

reconfiguration of complex polymer structures [58]. Commu-

nity detection techniques are highly applicable to studying

properties of non-biological materials [24–26] and their use

may be expanded in the future to quantitatively investigate

physical interactions between material components at inter-

mediate length scales and over time [59–61]. As such, this

study provides an advanced framework with quantitative

formalisms to investigate dynamic network reorganization

that may be applicable to a wide range of complex biological

and non-biological materials whose structure may affect bulk

material properties and function.

4.4. Methodological considerations and future directions
There are several methodological considerations pertinent to

this work. First, it remains an open question how to deter-

mine some of the input parameters of this technique, such

as the pixel window size used to define nodes and the cut-

off threshold for establishing connections between nodes.

Changes in the input parameters can alter the network size

and connection density, which may affect network properties

[33]. The parameters used to construct the networks in the

current study were chosen based on previously assessed accu-

racy of the QPLI techniques. Nearby choices of the size of the

pixel windows and the cut-off angle threshold varied the

network size and density. However, those changes were not
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sufficient to alter the finding that the loading-induced changes

in modularity only occurred in the AR regions, but not in the

NR regions, suggesting that this technique is robust to small

variations in input parameters. Nevertheless, systematic testing

of the effects of different thresholds would determine the

impact of diverse thresholding methods [20,62] and other rel-

evant inputs might have on detecting changes in collagen

network structure. Second, there may be additional means for

converting the angle differences into edge weights for collagen

network construction. In this study, the angle difference was

evenly scored from 1 to 10 to generate the connection weights.

An alternative is to assign weights based on the probability dis-

tribution of the alignment angle difference. Another possible

approach is to study the fully weighted network. However,

the angle difference still needs to be converted to connection

strength as those two quantities are inversely related. More

evaluation is required to determine the optimal method for

weight assignment. Third, examining the impact of time-step

length in the multilayer network formalism would be useful.

Future studies could also be conducted to test a broad range

of time increments in the multilayer network to evaluate their

effects on measuring network dynamics [28].

An alternative approach to quantifying the microstructure

of collagen matrix is to use two-point correlation or higher-

order correlation functions. The two-point correlation function

is a widely used statistic that describes the spatial heterogeneity

of the material morphology [63,64]. It defines the distribution

of a set of point processes by comparing each point with

every other point in the measured space [63,65]. Statisti-

cal pair correlation functions are typically computed via

analysis of images obtained using confocal, scanning electron

microscopy or small X-ray scattering techniques [64,65]. For

example, two-point correlation has been used to measure

the spatial fluctuations of collagen density and orientation

imaged by confocal microscopy during assembly of type I

collagen gel [64]. However, the correlation functions capture

the probability distribution and cannot uniquely determine

the organization of collagen fibre networks (moreover, many

different network topologies can be constructed from the

same probability distribution). The application of two-point

or N-point correlation functions to QPLI data for larger-scale

collagen configuration requires further investigation.

Although network construction techniques may be further

tested and improved in future studies and adjusted for appli-

cations on different tissue types, this study demonstrates the

relevance and significance of using community detection to

define and understand loading-induced collagen reorganization.
5. Conclusion
Collagen fibre reorganization plays an important role in cell

signalling and tissue homeostasis during loading [5,49].

Because the FCL is a quintessential example of a variety of

collagen-based tissues that bridge structural and mechanical

changes with altered cellular behaviours, it is important to

develop mathematical formalisms accompanying advanced

imaging techniques to uncover coordinated collagen fibre

movement first in human FCL and to later extend to other

biological materials. Using tools from the field of complex

systems, we revealed a steady and adaptive transition of

the collagen network organization in the FCL from the rest-

ing state with heightened modular architecture to the onset
of anomalous realignment with random structure. Differ-

ences in loading-induced changes in modularity and

flexibility between anomalously and normally realigned regions

and the loss of association between flexibility and FCL mechanics

in regions sustaining anomalous realignment may be used to

detect and predict microscopic and macroscopic tissue failure.

Our approach provides new insights for understanding how

micro- and macroscale tissue mechanics evolve across time and

length scales.
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Appendix A
Modularity is a quality function used to measure to what

extent a given partition of a network compartmentalizes its

communities [66,67]. Modularity of a weighted network is

defined as

Qstatic ¼
1

2v

X
ij

Aij �
kikj

2v

� �
dðgi, gjÞ,

where Aij is the adjacency tensor, 2v ¼ Sij Aij, ki is the strength

of node i, kj is the strength of node j, d is the Kronecker delta

(d ¼ 1 for i and j in the same community), gi is the community

to which node i is assigned and gj is the community to which

node j is assigned [35,68]. In this study, modularity is

optimized using the Louvain locally greedy algorithm [36].

For the case of temporal networks, the multilayer

modularity is defined as

Qmultilayer ¼
1

2m

X
ijlr

Aijl � gl
kilk jl

2vl

� �
dlr þ dijC jlr

� �
dðgil, g jrÞ,

where Aijl is the adjacency tensor between nodes i and j in net-

work slice l, gl is the structural resolution parameter that can be

used to tune the size of modules of layer l, kil is the strength of

node i in layer l, Cjlr is the connection strength of node j between

layer r and layer l, cjl ¼ Sr Cjlr, 2m ¼ Sjr (kjr þ cjr), gil is commu-

nity i in time slice l and gjr is community j in time slice r [27].

Modularity optimization is performed using a Louvain-like

locally greedy algorithm [36].

Stationarity is a measure of the mean similarity of module

composition over time, calculated as the mean autocorrela-

tion over consecutive time steps. The autocorrelation function

http://netwiki.amath.unc.edu/Genlouvain/Genlouvain
http://netwiki.amath.unc.edu/Genlouvain/Genlouvain
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https://sites.google.com/site/bctnet/
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U(t, t þ m) of two states of the same community G(t) at m time

steps apart is computed using the following formula

Uðt, tþmÞ ;
jGðtÞ> GðtþmÞj
jGðtÞ< GðtþmÞj ,

where jGðtÞ> GðtþmÞj is the number of common nodes in

both G(t) and G(t þ m), and jGðtÞ< GðtþmÞj is the total

number of nodes in G(t) and G(t þ m) [69]. The stationarity is

then defined as

z ;
Ptf�1

t¼t0
Uðt, tþ 1Þ

tf � t0 � 1
,

where t0 is the time when a community emerges, and tf is the
final time step before the given community is extinguished

[28,69].

Flexibility is a measure of change in the module compo-

sition in multilayer networks. Flexibility of node i is defined as

fi ¼
m

tf � 1
,

where m is the number of times the given node changed

modular assignment. The flexibility of the entire network is

defined as

F ¼ 1

N

XN

i¼1

fi,

where N is the total number of nodes in the network [28].
Interface
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