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Abstract—Inter-subject networks are used to model correla-
tions between brain regions and are particularly useful for
metabolic imaging techniques, like 18F-2-deoxy-2-(18F)flu-
oro-D-glucose (FDG) positron emission tomography (PET).
Since FDG PET typically produces a single image, correla-
tions cannot be calculated over time. Little focus has been
placed on the basic properties of inter-subject networks and
if they are affected by group size and image normalization.
FDG PET images were acquired from rats (n=18), normal-
ized by whole brain, visual cortex, or cerebellar FDG uptake,
and used to construct correlation matrices. Group size effects
on network stability were investigated by systematically
adding rats and evaluating local network connectivity (node
strength and clustering coefficient). Modularity and commu-
nity structure were also evaluated in the differently normal-
ized networks to assess meso-scale network relationships.
Local network properties are stable regardless of normaliza-
tion region for groups of at least 10. Whole brain-normalized
networks are more modular than visual cortex- or cerebel-
lum-normalized network (p<0.00001); however, community
structure is similar at network resolutions where modularity
differs most between brain and randomized networks.
Hierarchical analysis reveals consistent modules at different
scales and clustering of spatially-proximate brain regions.
Findings suggest inter-subject FDG PET networks are
stable for reasonable group sizes and exhibit multi-scale
modularity.
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INTRODUCTION

Network analysis has emerged as an important tool
to measure both normal and pathological brain func-
tion, modeling the brain as an interconnected circuit

instead of discrete regions with autonomous func-
tion.34 Although some aspects of the brain’s function
are isolated to a single region or several brain regions,
many critical functions involve sub-circuits or entire
networks of brain regions. For example, brain network
(BN) level changes are implicated in learning and
memory,8 sensation,2 and chronic diseases like Alz-
heimer’s disease.14 Those studies have used many
imaging techniques, including functional magnetic
resonance imaging (fMRI) and 2-deoxy-2-(18F)fluoro-
D-glucose (18F-FDG) positron emission tomography
(PET) to measure cellular function in the brain.2,13,44

Imaging data are transformed into functional net-
works which serve as representative frameworks for
topological relationships between brain regions.2,13,44

BNs are constructed using either inter-regional corre-
lation coefficients from brain activity recorded over
time2 or generated from brain activity across multiple
subjects in the same experimental group.13 Although
functional networks derived from time-series data have
well-defined properties and methods for network con-
struction,41 the methodological challenges associated
with inter-subject network construction have not been
defined.

FDG is a glucose analogue used to assess brain
activity since it measures synaptic glutamatergic
activity.39 In mammals, a substantial portion of resting
state glucose uptake supports synaptic activity, with
neurons taking up more glucose than other cells in the
central nervous system.24,26 Unlike fMRI and other
image measurements collected on the order of seconds,
a single PET image typically represents cumulative
brain activity over minutes-to-hours.33 Since regions
with highly correlated levels of brain activity are as-
sumed to be functionally coupled,13,30,44 inter-subject
correlation matrices are constructed from regional
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measurements of metabolic activity to measure the
relationship between brain regions. Network analyses
of metabolic data have elucidated the effect of keta-
mine treatment on brain hubs,13 established the role of
astrocytic transporters in metabolic synchronicity
across the brain,44 and identified stronger connectivity
and efficiency in right-sided compared to left-sided
temporal lobe epilepsy.42 Despite strong evidence of
biologically-relevant network changes in those studies,
the structure of inter-subject networks has not been
investigated, nor have group size and variability been
evaluated.

Community structure, which is the clustering of
regions into groups that are highly associated with
each other and less connected to all other nodes in the
network, is a hallmark of BNs.9 Since there is a trade-
off between efficiency of information transfer and ax-
onal wiring costs in the brain, modular network
structure is hypothesized as allowing the efficient
spread of information through brain circuitry.9,29 Since
modular architecture has been demonstrated in
fMRI,37 electrocorticography,22 and anatomical
BNs,11,19 metabolic BNs are expected to exhibit similar
organizational patterns. Even though modular archi-
tecture persists across different types of BNs, the
composition and size of these modules is flexible; the
brain’s functional organization can be altered by dif-
ferential inputs.8 Disease14 and aging29 can disrupt
brain community structure, suggesting that the normal
integration and transfer of information is also altered
in those states. Because both anatomical and func-
tional BNs demonstrate flexible community structure,
FDG PET networks are also hypothesized to have
flexible modular architecture. However, this aspect of
FDG PET network structure is currently unstudied.

This study investigated the resting state properties
of FDG PET inter-subject networks in the rat to
measure the metabolic relationships between brain re-
gions. Node strength, clustering coefficient, and mod-
ularity were computed to evaluate the local and global
properties of FDG PET BNs. Network diagnostics
were measured for groups with different sizes to
investigate the contribution of group size to network
diagnostics and to determine if there is a critical group
size for which networks stabilize. Although FDG PET
images are also commonly intensity-normalized to
correct for any variability in the dose of FDG, nor-
malization techniques differ.15,21,24 Network properties
were measured for different types of image normal-
ization to assess if, and how, network measurements
change by normalization strategy. To this end, FDG
uptake was normalized by whole brain activity, which
is used to standardize PET images before further
analysis.15,23,24 In addition, PET images were sepa-
rately normalized to the cerebellum, which is often

used in studies of dementia because it is the brain re-
gion least affected by disease,21 and the visual cortex, a
region minimally impacted by disorders that are
commonly studied using BN techniques.

MATERIALS AND METHODS

PET Imaging

All procedures were approved by the Institutional
Animal Care and Use Committee at the University of
Pennsylvania. Experiments were performed using fe-
male Holtzman rats (Envigo; Indianapolis, IN)
weighing 275±25 g at the start of the study. Rats were
housed with conditions recommended by the Associ-
ation for Assessment and Accreditation of Laboratory
Animal Care with a 12/12 h light/dark cycle, environ-
mental enrichment, and free access to food and water.

Rats (n=18) were injected with 18F-FDG, manu-
factured by the University of Pennsylvania Cyclotron
Facility, via tail vein catheter (800–1400 μCi at a vol-
ume<2 mL) under brief exposure to isoflurane
inhalation anesthesia (4% induction; 2% maintenance)
and subsequently transitioned to dexmedetomidine
sedation (0.075 mg/kg in 2 mL of 0.9% saline; DEX-
DOMITOR, Zoetis; Parsippany, NJ). Rats were kept
under sedation for 1 h before PET imaging. Three-
dimensional (3D) PET images were acquired in the
resting state using a Philips MOSAIC HP Small Ani-
mal PET scanner (15-min single-frame acquisition) and
were transferred to isolated housing until radioactivity
was below detectable limits.

Image Processing

PET images were reconstructed into a
128 9 128 9 120 matrix with a voxel size of
1 mm 9 1 mm 9 1 mm. Image volumes were cropped
around the head and spatially normalized to the Small
Animal Molecular Imaging Toolbox (SAMIT) 18F-
FDG template17 using linear, 6 degree-of-freedom
image registration (Advanced Normalization Tools)1

and re-sliced (0.2 mm 9 0.2 mm 9 0.2 mm). Brain
volumes were segmented into 50 regions using the
Schwarz stereotaxic rat brain atlas, with brain regions
defined using anatomical T2-weighted MRI scans.36,43

Collectively, the regions cover the entire brain which
allows construction of a global BN. The Schwarz atlas
contains composite and individual structures that are
important to brain function, including cortical regions,
limbic structures, and brainstem areas (Table 1). Mean
18F-FDG PET uptake was calculated across all voxels
within the combined left and right sides of each brain
region of each rat. The mean 18F-FDG uptake in each
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region was normalized by the global brain mean 18F-
FDG uptake for each rat to correct for variability in
injected activity. Additional analyses also investigated
effects of normalization of brain region uptake by the
visual cortex and cerebellum (Fig. 1a). The visual
cortex was chosen because it is not affected by disor-
ders that are often studied using BN analysis, such as

chronic pain, epilepsy, and depression. The cerebellum
is frequently used to normalize FDG uptake in
dementia patients because it is minimally affected by
disease,21 serving as a reasonable control region of the
brain.

Network Construction

Weighted, undirected inter-subject BNs were con-
structed; nodes of the network represent brain regions
and edges describe the functional relationship between
brain regions (Fig. 1b). Mean 18F-FDG uptake values
for each brain region from each rat were compiled into
separate vectors and the inter-regional Spearman’s
correlation coefficients were calculated for each pair of
brain regions (Fig. 1c). Spearman’s correlation is a
nonparametric measure of rank correlation that can be
applied to relate data with both linear and non-linear
associations. Adjacency matrices were constructed
with brain regions labeled on the x- and y-axis of the
matrix; correlation coefficients, from −1 to 1, com-
prised the rows and columns of the matrix. This ap-
proach resulted in a [50950] correlation matrix,
composed of 2500 association edge weights. BNs that
were normalized by the visual cortex or cerebellum
resulted in [49949] correlation matrices, with 2401
association edge weights. All edges were retained for
network analysis, since arbitrary thresholding is often
associated with a loss of information.35 All network
constructions and analyses were performed in Matlab
R2016a (Mathworks; Natick, MA).

Network Stability and Diagnostics

Network diagnostics were calculated using the Brain
Connectivity Toolbox (BCT) in Matlab.34 Node (n)
strength, which conveys information about a node’s
connectivity with the network and the strength of such
connections, was calculated by summing the edge
weights, wij, connecting nodes, i and j, of the net-
work.35 Node strength is commonly defined as the
weighted degree, kW, of a node, i, according to this
equation:

kWi ¼
X

j2n
wij: ð1Þ

The weighted clustering coefficient describes the
neighborhood surrounding each node as defined by the
presence of triangle motifs, a common meso-scale
structure of complex networks. The weighted cluster-
ing coefficient is calculated by finding the average
weight, w, of all geometric triangles, tW, associated with
each node, i.35 Triangles are formed through edges
connecting nodes i, j, and h:

TABLE 1. SAMIT brain regions and volumes.17

Brain region Volume (mm3)

Nucleus accumbens—core 7.4

Nucleus accumbens—shell 7.5

Amygdala 40.8

Nucleus stria terminalis 4.6

Caudate/putamen 86.7

Corpus collosum 61.3

Cortex—auditory 27.2

Cortex—cingulate 17.6

Cortex—entorhinal 48.9

Cortex—frontal association 9.8

Cortex—insular 34.2

Cortex—medial prefrontal 13.9

Cortex—motor 86.8

Cortex—orbitofrontal 24.5

Cortex—parietal association 11.9

Cortex—piriform 46.5

Cortex—retrosplenial 34.3

Cortex—somatosensory 158.8

Cortex—temporal association 12.0

Cortex—visual 69.5

Diagonal band 3.9

Globus pallidus 7.7

Hippocampus—anterodorsal 19.0

Hippocampus—posterior 4.3

Hippocampus—posterodorsal 35.2

Hippocampus—subiculum 23.1

Hippocampus—ventral 27.9

Hypothalamus—lateral 11.2

Hypothalamus—medial 25.6

Internal capsule 16.1

IPAC 2.7

Medial geniculate 3.2

Mesencephalic region 30.6

Olfactory nuclei 10.9

Olfactory tubercle 12.2

Periaqueductal gray 8.0

Pons 44.6

Raphe 2.2

Septum 14.5

Substantia innominata 4.7

Substantia nigra 6.6

Superior colliculus 28.3

Thalamus—dorsolateral 43.2

Thalamus—midline dorsal 17.1

Thalamus—ventromedial 3.7

Ventral pallidum 4.9

Ventral tegmental area 2.5

Zona incerta 4.8

Medulla 61.8

Cerebellum 192.7
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tWi ¼ 1

2

X

j;h2N
ðwijwihwjhÞ1=3: ð2Þ

The mean triangle weights are normalized by the
degree of node i, ki, to calculate the weighted clustering
coefficient, CW:

CW ¼ 1

n

X

i2N

2tWi
kiðki � 1Þ: ð3Þ

The node strength and local clustering coefficient
were analyzed separately for positive and negative edge
weights.

Because inter-subject network construction pro-
duces a single network per group, additional tech-
niques were employed to measure if, and how,
individual subject variation and group size affect the
network diagnostics. Node strength and clustering
coefficient distributions were investigated for two sep-
arate network constructions: (1) networks constructed
by varying the numbers of rats to measure how group
size affects network properties and (2) networks in
which different rats were excluded to analyze the effect

of subject-to-subject differences on network diagnos-
tics.

Although inter-subject networks can be constructed
from a range of group sizes,13,20 there is no consensus
on the cohort size needed for network stability. So,
network stability was assessed across the three BNs
with the different normalization approaches (global
mean, visual cortex, cerebellum). The clustering coef-
ficient and node strength distributions were calculated
for networks constructed using as few as 4, and as
many as 18, rats in all possible permutations of order.
For example, in one permutation, the smallest group
(n=4) included Rats #1–4 and in a second permuta-
tion, it was composed of Rats #2–5. Changes in group
composition were applied for all group sizes. The
critical cohort size was defined as the smallest group
size having no significant change in the mean network
diagnostic with increased size.

In addition to establishing a critical cohort size, rat-
exclusion networks were constructed to assess vari-
ability in connectivity that may be introduced by
individual rats. Unlike networks constructed for indi-
vidual subjects from time-varying datasets,18 inter-

FIGURE 1. Brain networks were constructed by (a) normalizing FDG PET images to uptake in the visual cortex (VC), cerebellum
(C), or whole brain (WB), separately, and (b) segmenting FDG PET images into brain regions using the Schwartz rat brain atlas.
Brain regions defined the nodes of the network and (c) the inter-subject correlation coefficient between brain regions determined
the edge weight.
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subject networks do not permit analyses of individual
variability.13,20 Therefore, subject-to-subject variability
was determined by systematically excluding each rat
from the network construction (rat-exclusion net-
works) and calculating the mean cumulative distribu-
tion function for each network diagnostic.27 Rat-
exclusion networks were constructed separately for
each normalization technique. The mean and standard
deviation of node strength and the clustering coeffi-
cient were calculated for all networks.

Modularity and Community Structure

Modularity (Q) measures the degree to which a
network is optimally partitioned into non-overlapping
modules (m).31 Nodes that are grouped within the same
module are more densely connected to each other and
have weaker associations to nodes in other modules.
For a weighted network, the modularity is calculated
using the number of weighted connections in the
graph, lW, the within-module connection weights, wij,
the chance-expected within module connection
weights, eij, and the resolution parameter, γ; mi is the
module containing node i, and the Kronecker delta
function, δmi,mj, is 1 if mi=mj (nodes i and j are in the
same module) and 0 otherwise34:

QW ¼ 1

lw

X

i;j2N
½wij � ceij�dmimj

ð4Þ

in which the expected connection weights are defined
by:

eij ¼
kwi k

w
j

lw
: ð5Þ

The variable eij is scaled by the resolution parameter,
γ,32 which can be tuned to identify the coarsest-to-
finest partitions of a network.4

An asymmetrical modularity measurement is
implemented for weighted networks to account for the
unequal importance of positive and negative weights in
modularity-partition determination.35 Positive con-
nections contribute to the integration of brain regions
into modules, whereas negative connections influence
the dissociation of brain regions from modules. QW is
calculated separately for the positive and negative
connections in the weighted network, yielding QW+

and QW−, which are summed (QW*). QW− is reweighted
by the total number of network connections35:

QW� ¼ Qþ þ lw�

lwþ þ lw�
Q�: ð6Þ

Reweighting Q− increases the influence of positive
weights when calculating QW* and therefore high-Q
network partitions should theoretically have most

positive weights within modules and most negative
weights between modules.

Due to the non-deterministic nature of community
detection calculations, the networks were partitioned
over 100 permutations of the community Louvain
algorithm in the BCT.6,35 To evaluate how modularity
and network architecture are affected by length-scale,
network partitioning was performed at resolution le-
vels from γ=0 to γ=2.0 in steps of 0.1.4,6 The com-
munity Louvain algorithm outputs both the
modularity of the network and the community
assignments of each node. Peak modularity was used
to determine the unique-consensus clustering; in this
analysis, the community structure with peak modu-
larity also corresponded to the most prevalent struc-
ture over 100 permutations. The mean network
modularity over 100 permutations was compared to
the mean modularity of 100 random graph null models
with network weight, degree, and strength distribu-
tions matched to inter-subject BNs.35 Community
structure was also compared between BNs and random
graph null models by calculating the normalized mu-
tual information, a metric that quantifies the similarity
between community partitions.28

Data and Statistical Analyses

All statistical analyses were performed in R (version
3.2.3, The R Foundation for Statistical Computing),
with significance at p<0.05. Edge weight distributions
for each network were tested for normality using the
Shapiro–Wilk normality test. Network diagnostics
were statistically compared across group sizes and
ordering permutations using separate one-way ANO-
VAs for each normalization technique. Differences
between networks constructed from increasingly larger
group sizes were subjected to Tukey’s HSD post hoc
test. Network diagnostics were compared between
whole brain-, visual cortex-, and cerebellum-normal-
ized networks using separate one-way ANOVAs to
detect changes in network properties due to normal-
ization technique. Brain and random network modu-
larity were statistically compared across all resolutions
tested using a t test to test if the BN properties are
different than those of a random network that pre-
serves size and density aspects of the BN.

RESULTS

Network Diagnostics and Group Size

The edge weight distribution for the whole brain-
normalized FDG PET BNs reveals an even distribu-
tion of positive (1392) and negative (1108) edge weights
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throughout the resting state network (Fig. 2). The vi-
sual cortex-normalized network has a substantially
larger number of positive edges (1843) than negative
edges (558) compared to the whole brain-normalized
network. The cerebellum-normalized network is pri-
marily composed of positive edges (2309) and has few
negative edges (92). All three networks have normal
distributions of edge weights (p<0.0001).

Group size influences both node strength and clus-
tering coefficient cumulative distributions for FDG
PET resting state networks (Fig. 3). Networks con-
structed from a very small number of rats (small-n),
have a higher proportion of positive connections and
greater mean clustering coefficients and node strengths
compared to networks using a higher number of rats
(large-n). Analysis over all 105 possible permutations
of rat ordering reveals that the mean node strength and
clustering coefficients stabilize for networks con-
structed from 10 or more rats across the normalization
techniques and diagnostics tested. Clustering coeffi-
cient and node strength are most altered by group size
in the whole brain-normalized network, and to a lesser
degree in the other networks (Fig. 3). Therefore, the
results pertaining to group size specifically focus on the
whole brain-normalized network.

The mean clustering coefficient for positive con-
nections decreases between whole brain-normalized
networks with 9–10 rats (p=0.028). However, the
clustering coefficient is not different between groups
using 10 or 11 rats (p=0.272) (Fig. 3). For negative
connections, clustering coefficient is less affected by
group size and stabilizes at groups between 5 and 6 rats
(p=0.824). The mean node strength for positive con-
nections stabilizes between 10 and 11 rats (p=0.082)
and between groups using 9 and 10 rats (p=0.081) for
negative connections. There are no differences between
network diagnostics for group sizes of 10 and 11 rats in
the visual cortex- and cerebellum-normalized networks
(p>0.05), suggesting that all networks are stable at
this group size and larger.

At this stable group size, the node strength and
clustering coefficient amongst positive connections are
greater in the cerebellum- and visual cortex-normalized
networks compared to the whole brain-normalized (p
<0.00001). Amongst negative connections, the clus-
tering coefficient is lower in the cerebellum-normalized
network compared to the whole brain and visual cor-
tex-normalized networks (p<0.00001). The clustering
coefficient for the whole brain- and visual cortex-nor-
malized networks are not significantly different (p=
0.999). The node strength amongst negative connec-
tions is greater in the whole brain-normalized network
compared to both the visual cortex-normalized and
cerebellum-normalized networks (p<0.00001).

Community Structure of PET Networks

FDG PET networks exhibit multi-scale community
structure, as evidenced by network partitioning across
the range of resolutions tested (γ=0–2.0) (Fig. 4).
Across normalization strategies, modularity decreases
as γ is increased, suggesting weaker partitioning of the
network at higher resolutions compared to lower res-
olutions. FDG PET network modularity is greater
than randomized networks when compared across all
values of γ>0.1 in the whole brain- (p<0.00001), vi-
sual cortex- (p<0.00001), and cerebellum-normalized
(p=0.0001) networks (Fig. 4a). However, the modu-
larity of cerebellum-normalized networks is not dif-
ferent from random networks for γ<0.8.

Over 100 permutations, all partitions of the whole
brain-normalized and visual cortex-normalized net-
works exhibit a 2-module structure at low resolutions,
like γ=0.5 (Fig. 4c). However, all nodes in the cere-
bellum-normalized network are assigned to a single
module. At higher resolutions, such as γ=2, a greater
number of communities form in all three networks
(Fig. 4c). The difference in modularity peaks for all
three normalized-networks in the range of γ=0.7–1.0,
demonstrating that FDG PET networks in this range

FIGURE 2. The whole brain-, visual cortex-, and cerebellum-
normalized networks are shown with the cumulative distri-
bution function (cdf) of edge weights for each network.
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are most distinct from their randomized counterparts
(Fig. 4a). Normalized mutual information is also
minimized in this range (Fig. 4b), confirming the lack
of similarity in community structure between brain and
randomized networks.

Interestingly, the three differently normalized net-
works have almost identical community structures at γ
=1.0 (Fig. 4c), indicating that there may be a con-
sensus in FDG PET network structure at this resolu-
tion. Anatomical analysis reveals that 46 of the 50
brain regions in the network are assigned to the same
communities across all three normalization techniques
(Fig. 4d). Four regions, including the medulla,
somatosensory cortex, cingulate cortex, and frontal
association cortex are differently assigned between at
least two of the three networks. Module I is composed
of anterior cortical regions, caudate/putamen (CP),
nucleus accumbens (N), and pallidal nuclei. Module II
contains cortical regions, including the visual, audi-
tory, and motor cortices, the hypothalamus (Hy), and
amygdala (A). The somatosensory (S), cingulate (C),

and frontal association cortices have shared affiliations
between modules I and II. The largest module (III)
includes the hippocampus (H) and thalamic (T) re-
gions, upper brainstem regions, mesencephalon, and
cerebellum. The medulla affiliates with both modules
II and III.

Hierarchical Network Organization

The whole brain-normalized network is the most
modular and has the strongest hierarchical community
structure (Fig. 4). At a low network resolution (γ=
0.5), the network is composed of two communities,
primarily defined by the anterior or posterior
anatomical location of a brain region (Fig. 5). Tuning
the resolution to γ=0.7 uncovers a third, small com-
munity that is located between the anterior and pos-
terior modules. The new module includes the amygdala
and temporal association, visual, auditory, and
entorhinal cortices. Further tuning to γ=1.0 expands
that module to include the hypothalamus, motor cor-

FIGURE 3. The average clustering coefficient and node strength calculated for networks that include groups sized of 4 rats to 18
rats, shown separately for positive (+) and negative (−) edges. Diagnostics of FDG PET networks are stable when 10 or more rats
are used in network construction (denoted by pink shading).
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tex, and insular cortex. These regions primarily disas-
sociate from the anterior module and the posterior
module remains consistent across γ=0.5–1.0.

Increasing the resolution to γ=2.0 reveals six
smaller modules (Fig. 5). The posterior and amygdala
modules are largely consistent from γ=1.0 to γ=2.0
and the smaller modules are derived from the less
stable anterior module (Fig. 5). The four small mod-
ules include the caudate/putamen and globus pallidus,
nucleus accumbens core and anterior cortex, nucleus
accumbens shell and somatosensory cortex, and lateral
hypothalamus, substantia nigra, and ventral tegmental
area. Decomposition into smaller modules splits the
shell and core components of the nucleus accumbens
and medial/lateral hypothalamus into separate mod-
ules (Fig. 5). Also, the cingulate cortex and the ven-
tromedial portion of the thalamus are assigned to their
own modules.

DISCUSSION

This study used community detection and network
diagnostic measurements to define properties of inter-
subject FDG PET networks. Although PET inter-
subject networks have been used to describe altered
brain function in Alzheimer’s disease, epilepsy, and
during astrocyte stimulation with ceftriaxone,30,42,44

the basic characteristics and structure of such networks
have not been studied. This study found that the sta-
bility of network properties depends on the size of the
group by detecting that node strength and clustering
coefficient are altered by cohort size (Fig. 3). Further,
the minimum group size for which FDG PET inter-
subject network analyses are stable across different
normalization techniques was determined here (n=10)
to be similar to the group size of previous inter-subject
network studies that included 9–10 rodents in each
group.13,44 However, while those larger group sizes are

FIGURE 4. Normalization technique (a) affects the value of Qdiff across multiple resolutions. The difference between the whole
brain-normalized and randomized networks, Qdiff, is larger than both visual cortex- and cerebellum-normalized networks across all
resolutions tested (p<0.00001). The peak Qdiff is similar for the three networks (γ=0.7–1.0). (b) Normalized mutual information
between brain networks and randomized networks is minimized within the same range. (c) The networks have multi-scale com-
munity structure and are composed of three modules at γ=1. (d) At γ=1.0, there are strong associations between the caudate/
putamen, nucleus accumbens, and prefrontal regions (I), hypothalamus, amygdala, and posterior cortex (II), and thalamus, hip-
pocampus, pons, and mesencephalon (III). The medulla, somatosensory cortex, cingulate cortex, and frontal association cortex are
differently assigned in the three networks and are shaded to designate affiliation with two modules. Labeled and enlarged nodes
are included for orientation.
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statistically powered to detect differences in brain
activity between control and ketamine or ceftriaxone
treatment groups,13,44 they did not perform network-
specific analyses of group size. Although node strength
and clustering coefficient metrics are modified by dif-
ferently normalized networks (Fig. 3), some of these
disparities may be connectivity density-dependent and
not represent true topological differences (Fig. 2).16,40

Techniques such as the minimum spanning tree can be
used to test for density and connectivity-dependent
differences between networks because they are not
sensitive to connection strength (Supplemental Fig-
ure 1).40

These stable FDG PET inter-subject networks also
have organized, modular structure, which is a key
feature of BNs.29 Modularity is up to 20 times greater
in FDG PET networks than in corresponding ran-
domized networks (Fig. 4a), suggesting there is strong
community structure in the network that is not ex-
pected to occur by random chance.29 The enduring
community structure that is observed across length
scales (Fig. 4a) implies that brain metabolism is orga-
nized to achieve segregated information processing,38

which aligns with blood oxygenation2,12 and electrical
measurements22 of brain activity. The difference be-
tween brain and randomized network modularity
peaks in the range of γ=0.7–1.0 (Fig. 4b), with
greatest modularity in the whole brain-normalized
network and lower modularity in the visual cortex- and
cerebellum-normalized networks. The modularity of
the whole brain-normalized and visual cortex-nor-
malized networks agrees with previous findings for

fully-connected, weighted BNs 5 and peak modularity
for rat BNs.3

Despite differences in network diagnostics and
modularity, the different normalization techniques
produce almost identical community structures in the
range of peak Qdiff, particularly at γ=1.0 (Fig. 4c).
Consistent community structure and node assignments
within the structure demonstrate that normalization
strategy does not substantially impact network struc-
ture within peak Qdiff ranges. The consensus network
model (Fig. 4d) contains strong connectivity between
anterior cortical and subcortical regions (module I),
subcortical/posterior regions (module III), and mid-
brain subcortical and cortical regions (module II)
(Fig. 4d). fMRI BNs in the rat identify particularly
strong connectivity between the prefrontal/cingulate
cortices, caudate/putamen, nucleus accumbens, sep-
tum, and amygdala,37 similar to module I of the con-
sensus model. However, the three normalized networks
studied here suggest that the amygdala does not
strongly associate with these coupled brain regions in
metabolic networks (Fig. 4c).

Although community structure is consistent at γ=
1.0, network structure is not consistent outside of peak
Qdiff; it is recommended that the normalization strat-
egy be selected based on the biological questions under
study and with consideration of any anesthetics or
sedatives used.21,24 For example, microPET FDG
images acquired in a rodent seizure model are nor-
malized to the pons because the initiating agent does
not affect the metabolic rate of that brain region.24

Since normalization by global brain uptake is the most

FIGURE 5. In the whole brain-normalized network, there is multi-scale community structure that exhibits a hierarchical pattern. At
a low network resolution (γ=0.5), the brain is partitioned into 2 modules: the anterior/cortical structures and posterior/deep
structures. When the brain network is most different from a random network (peak Qdiff, γ=0.7–1.0), the network has 3 modules:
consistent anterior and posterior communities, and a third community that includes the hypothalamus, amygdala, and posterior
cortical regions. At a high network resolution (γ=2.0) the brain is partitioned into 6 modules, which separates the sub-regions of
two larger structures (designated by partially shaded circles, which represent 2 nodes), including the shell and core of the nucleus
accumbens and the medial and lateral hypothalamus, which associates with the substantia nigra (SN).

Multi-scale Modularity in FDG PET Brain Networks 1009



widely used scaling technique for FDG PET
images,15,23,42 it was a focus of the current analysis.

Evaluating community structure in the whole brain-
normalized network revealed strong hierarchical com-
position, with consensus in structure between different
network scales. At γ=0.5, the network is partitioned
into two modules, which are primarily defined by
anterior or posterior location in the brain (Fig. 5). This
finding is consistent with studies of both structural and
functional BNs, which identify strong connectivity
between spatially-proximate brain regions,38 particu-
larly for communities with many nodes (low resolu-
tions of gamma).25 This may be a function of non-
trivial constraints on the embedding of BNs within a
rodent or human skull.10 Brain anatomy has been
hypothesized as optimized for minimum connection
distance between functionally coordinated regions
while also maintaining some long-distance connections
that act as “short-cuts” between distant areas of the
brain.38

In this work, the connectivity within the posterior
module is maintained when sweeping from γ=0 to γ=
2.0, dividing into a medium and a small module at high
network resolutions (Fig. 5). The anterior module is
much less stable than the posterior module, splitting
into two communities at γ=0.7 and giving rise to
many smaller communities at higher resolutions.
Resting state fMRI has also identified multiple cortical
communities at higher network resolutions in both
humans and rats.12,29 However, PET and fMRI BNs
are inherently constrained by their resolution limits
and it remains challenging to study small modules.
Therefore, imaging studies can be complemented by
other approaches, such as an aggregated network of>
16,000 histological tract tracing studies.7 The tract
network suggests that the rat cortex strongly subdi-
vides into four modules when examined at the resolu-
tion of neurons and axons.

This study supports the presence of multi-scale
modularity in inter-subject FDG PET networks and
consistency in community structure across different
normalization techniques. FDG PET BNs have a
hierarchical community structure, with a consistent
module composed of posterior and deep brain struc-
tures and a less stable module with anterior and cor-
tical brain regions. In addition, a technique to identify
the appropriate group size for stable FDG PET net-
works is described; in this study, group sizes of at least
10 rodent subjects are needed to minimize data vari-
ability that may be present in small, unstable networks.
Further studies are needed to investigate size-stability
in the context of a disease and/or drug perturbation, as
well as effects of these changes on multi-scale modu-
larity. Studies that use FDG PET networks to compare
disease states may also benefit from statistical thresh-

olding to identify the strongest sub-circuits within the
network and filter out noisy or spurious connections.16

However, filtered networks may suffer from complete
disconnections between a node and the larger network
(Supplemental Figure 2) and/or isolation of nodes with
only positive or negative connections. Such network
detachments are not present in the fully-connected
correlation matrices analyzed in the present study.
Although additional studies are needed to fully char-
acterize these resting-state networks, this is the first
study to demonstrate multi-scale community structure
in FDG PET BNs.

ELECTRONIC SUPPLEMENTARY MATERIAL

The online version of this article (https://doi.org/
10.1007/s10439-018-2022-x) contains supplementary
material, which is available to authorized users.
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