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Abstract

Back pain and spinal degeneration affect a large proportion of the general population. The economic burden of
spinal degeneration is significant, and the treatment of spinal degeneration represents a large proportion of health-
care costs. However, spinal surgery does not always provide improved clinical outcomes compared to non-surgical
alternatives, and modern interventions, such as total disc replacement, may not offer clinically relevant improve-
ments over more established procedures. Although psychological and socioeconomic factors play an important role
in the development and response to back pain, the variation in clinical success is also related to the complexity of
the spine, and the multi-faceted manner by which spinal degeneration often occurs.

The successful surgical treatment of degenerative spinal conditions requires collaboration between surgeons, engi-
neers, and scientists in order to provide a multi-disciplinary approach to managing the complete condition. In this
review, we provide relevant background from both the clinical and the basic research perspectives, which is synthe-
sized into several examples and recommendations for consideration in increasing translational research between
communities with the goal of providing improved knowledge and care.

Current clinical imaging, and multi-axis testing machines, offer great promise for future research by combining in-
vivo kinematics and loading with in-vitro testing in six degrees of freedom to offer more accurate predictions of the
performance of new spinal instrumentation. Upon synthesis of the literature, it is recommended that in-vitro tests
strive to recreate as many aspects of the in-vivo environment as possible, and that a physiological preload is a criti-
cal factor in assessing spinal biomechanics in the laboratory. A greater link between surgical procedures, and the
outcomes in all three anatomical planes should be considered in both the in-vivo and in-vitro settings, to provide

data relevant to quality of motion, and stability.
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Introduction

Spine-related symptoms and conditions, such as back
pain, affect a large proportion of the general popula-
tion, but the spine’s complex structure makes it diffi-
cult to determine the exact source and/or cause of
pain. The number of patients seeking treatment for
spine-related problems was estimated to be nearly 33
million in 2005,' with a nearly 15-fold increase in the
number of complex spinal fusion procedures per-
formed between 2002 and 2007 in the Medicare pop-
ulation.” In a brief published by the Agency for
Healthcare Research and Quality in 2014, spinal fu-
sion was the 6th most common surgical procedure,
with 488,000 cases performed annually.’ However, in
terms of aggregate hospital costs, it represents the

single-most expensive operative procedure, account-
ing for $12.8 billion per year.’ This large aggregate
expense, along with the trend of increased utiliza-
tion,* has made spine surgery a leading target for cost
containment.>®

A fundamental problem in spine management is that
much of the pre-clinical research and in-vitro testing
of surgical instrumentation and devices, which has
led to approval of a staggering number of operative
choices, has not necessarily produced improved pa-
tient outcomes.”® Patient outcomes may be improved
upon by gaining a more detailed understanding of the
performance of such surgical devices, both in biome-
chanical laboratory tests, and in the clinical setting,
and assist with the ultimate goal of improving patient
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care.

Each level of the spine (from C2 to S1) comprises a
triple joint construct with six degrees of freedom
(DOF) (Figure 1). The interaction of these struc-
tures during normal activities requires complex tech-
niques to understand and fully define the biomechan-
ics of the spine, the effect of injuries and degenera-
tion, and to identify the most effective of various
treatment options. Wear and fatigue testing stan-
dards are well-established for most forms of spinal
instrumentation.”” However, these standards do not
assess the likely biomechanical performance of de-
vices in-vivo. Although previous calls for standard-
ized in-vitro spine testing methods have outlined the
importance of different aspects of spinal testing, how
protocols can be developed along standardized pro-
cedures,'®" and what key areas of research should be
focused on using such testing protocols,”®* the link
between in-vitro testing and the in-vivo environment,
and between in-vitro test methods and clinical prac-
tice, can often be disconnected.

This review provides an overview of clinical practice
relating to spinal degeneration, and outlines key de-
velopments in multi-axis biomechanical testing relat-
ing to procedures and instrumentation used clinical-
ly. The link between in-vitro and clinical correlates is
then highlighted with presentation of specific case
studies, which form the basis for recommendations
for clinically relevant research.

Anatomy & Kinematics

The spinal column consists of 33 vertebrae, fibro-
cartilaginous and ligamentous structures, and nu-
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merous muscular attachments. Degeneration or com-
promise of any of these elements may lead to pain
and/or disability.”** Aside from the unique upper-
most cervical vertebrae (C1 and C2), most spinal lev-
els have similar anatomy (Figure 1), properties and
essential functions. The vertebral body (VB) at each
level increases in size from the cranial to caudal end
of the spinal column to accommodate the increased
loads present.

The bilateral facet joints and the intervertebral disc
(IVD) are responsible for the articulations at each
spinal level.” On the dorsal aspect of the bony spine,
the inferior articulating process of the vertebra above
and the superior articulating process of the vertebra
below are encapsulated by a ligament to form the bi-
lateral facet joints. The majority of axial loading in
the spine is transferred through the vertebral bodies
and IVD, with facet load bearing estimated to be
10-20% of the total axial load.** The orientation of the
facet joints dictate their function, with the coronally-
oriented facet joints of the cervical and thoracic seg-
ments resisting translation but allowing flexion, ex-
tension, and rotation, while the sagittally-oriented
lumbar facets resist rotation but allow flexion and ex-
tension. The healthy IVD consists of a hydrated in-
ner nucleus pulposus surrounded by the fibrocarti-
lagenous annulus fibrosus. The IVD distributes axial
loads, allows motion between vertebrae (axial com-
pression/distraction, flexion/extension, lateral bend-
ing, axial rotation), and limits rotation and shear. The
mechanical characteristics of spinal degeneration of
the IVD have been simulated in-vitro,” and such
methods can be used to further understand the de-
generation of the spine. Degeneration or trauma to
these anatomic components can compromise the
spine’s ability to guide normal motions or to limit ab-
normal motions.”

The ligaments of the spine provide passive stabiliza-
tion and serve as tension bands to prevent excessive
motion. The paraspinal musculature also has a signif-
icant role in stabilizing the spine, in addition to main-
taining posture and providing motion. The abdomi-
nal trunk muscles and multifidus muscles are impor-
tant for lumbar spinal stability.”® The erector spinae
muscles of the lumbar region facilitate lower back ex-
tension, and the semispinalis cervicus muscle, which
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attaches to the C2 spinous process, has a consider-
able role in neck extension and prevention of cervical
kyphosis.” Weakness and atrophy of the dorsal lum-
bar musculature is thought to play a significant role
in the development of post-operative failed back syn-
drome.”

The physiologic spinal curves in the sagittal plane
have important biomechanical contributions to nor-
mal spinal function. The balance of cervical lordosis,
thoracic kyphosis, and lumbar lordosis permits nor-
mal standing posture without excessive strain on the
paraspinal musculature and spinal joints. In the coro-
nal plane, the spinal column is expected to be rela-
tively straight, and the severity of coronal plane
curves are measured using the Cobb angle technique.
In evaluating degenerative coronal plane curves in
adults, Cobb angles less than 10° fall within normal
limits, whereas angles greater than 10° are deemed to
be scoliotic, which occur primarily in the lumbar
spine.” Imbalances, in either the coronal or sagittal
planes, may cause back pain and varying degrees of
neurologic dysfunction, although in patients with
multi-planar deformity, the degree of sagittal imbal-
ance has been found to be the most reliable predictor
of clinical symptomatology.”” When symptomatic,
patients may compensate for their spinal imbalance
by altering their posture and pelvic tilt, which may
lead to further pain, fatigue, and accelerated spinal
degeneration.”

For clinical purposes, spinal motion can be consid-
ered as occurring in the sagittal (flexion and exten-
sion), axial (rotation), and/or coronal (lateral bend-
ing) planes. In reality, motion is far more complex
due to coupling of motions, such as that between axi-
al rotation and lateral bending. Translation in each
plane imposes shear loading, although normal spinal
anatomy serves to limit such motion. Flexion/exten-
sion range of motion (ROM) is age-dependent and
highest in the cervical spine, with normal values of
45-60° of flexion and 60-80° of extension.*>* Total
thoracic flexion/extension is approximately 30°, and
lumbar flexion and extension are approximately 50
and 20°, respectively in asymptomatic individu-
als.*** Aside from C1-C2, lateral bending is relatively
consistent throughout the spine.” Axial rotation is
greatest at C1-C2 (>30° in either direction), but rela-

tively constant in most of the cervical and thoracic
spines, and very limited in the lower thoracic and
lumbar regions.” Although ROM is often a focus of
biomechanical tests, clinical examination of ROM is
relatively rudimentary, and focuses primarily on flex-
ion/extension without formal measurements.

Degeneration in the Clinical

Scenario

Although many classifications of clinical instability
have been proposed, the most commonly cited defin-
ition is that provided by White and Panjabi: "the loss
of the ability of the spine under physiological loads to
maintain relationships between vertebrae in such a
way that there is neither damage nor subsequent irri-
tation to the spinal cord or nerve roots, in addition,
there is no development of incapacitating deformity
or pain due to structural changes.”** Spinal pathology
can be degenerative, traumatic, infectious, neoplas-
tic, or iatrogenic, and can lead to clinical instability,
although patients may have significant back and neck
pain without overt instability secondary to abnormal-
ities in specific pain generators (e.g. the IVD or facet
joint).**!

Degenerative processes in the IVD begin with the
loss of proteoglycans that results in lower water-
binding capacity and shock absorption.” The loss of
elasticity of the annulus fibrosus makes it more sus-
ceptible to tears and herniations. As the disc desic-
cates, disruption of the normal distribution of axial
loading creates a degenerative cascade (Figure 2).*
That change in axial loading can also produce in-
creased stress on the facet joints, which can lead to
arthritic changes, which in turn may lead to displace-
ment or crowding of the ligamentum flavum, and
compression of the neural structures.” Additionally,
age-related losses in bone mineral density (BMD)
may result in osteopenia or osteoporosis, which pre-
dispose individuals to compression fractures, which
may alter load transfer through the spinal column
and lead to degeneration.

Imaging & Diagnosis
Clinical evaluation of the patient with spine pain in-
cludes a history and physical examination focusing
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on the neurological examination and review of rele-
vant imaging. Once any “red flags” (e.g. fever, pro-
gressive neurologic deficit, history of unintentional
weight loss, bowel/bladder dysfunction) have been
ruled out, which would suggest infection, neoplastic
process, or the need for urgent surgery, magnetic
resonance imaging (MRI) is the first line imaging
modality for degenerative disease.* Unexpected

Fig. 2. Cross-sections of the human cadaveric intervertebral discs in the
sagittal plane, showing mild (top), moderate-to-severe (middle), and severe
(bottom) degeneration.

findings on plain x-rays are exceedingly rare; thus, x-
rays are not recommended for routine evaluation of
degenerative back and neck pain unless there is a
strong suspicion for malignancy, inflammatory condi-
tions, acute fracture, or infection. However, dynamic
flexion/extension radiographs, or dynamic MRI, may
be obtained to evaluate for motion indicative of insta-
bility.** MRI, in particular, has become the modality
of choice for evaluation of spine patients, since it
provides detailed views of the IVD, ligaments, and
neural structures. Assessment of the bony anatomy is
superior with computed tomography (CT) scanning,
but most bony degenerative pathology can be ade-
quately evaluated with MRI.

The mainstay of determining degenerative radi-
ographic instability is standing flexion/extension x-
rays demonstrating abnormal motion or static defor-
mity (e.g. spondylolisthesis). Traction/compression
x-rays have been deemed to be of limited use.” The
primary criteria in evaluating flexion/extension films
are sagittal plane translation (the distance between
straight lines drawn along two consecutive posterior
VBs), and sagittal plane rotation (the change in the
angle formed between lines drawn along the end-
plates flanking a disc space) (Figure 3). Sagittal trans-
lation is often expressed as a percentage of VB
anterior-posterior length to minimize technical dif-
ferences between films. Spondylolisthesis is graded
from I-IV based on the Meyerding scale of translation:
grade I is up to 25%; grade Il is 25-50%; grade III is
50-75%; grade 4 is 75-100%; more than 100% transla-
tion is considered spondyloptosis.

White and Panjabi defined lumbar instability as
translation >4.5mm (or 15% of anterior-posterior dis-
tance) and rotation of >15° at L1-2, .2-3, and L3-4,
>20° at L4-5, and >25° at L5-S1.*® However, Iguchi
and colleagues evaluated 1,090 outpatients for trans-
lation and angulation and found a cutoff of 3mm of
translation to be associated with more severe clinical
symptoms, and that angulation does not play a signif-
icant role. Likewise, many radiologists currently use
a dynamic slip >3mm, static slip 4.5 mm, or angula-
tion >10-15° as the rule-of-thumb for radiographic in-
stability in the lumbar spine.***” The variation in re-
ported findings highlight the importance of clinical
correlation, since many asymptomatic patients may
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have spondylolisthesis or radiographic instability,
with sagittal angulation as high as 25° being reported
in healthy volunteers.* In the cervical spine, White
and Panjabi proposed cervical instability as >3.5 mm
of vertebral translation or >11° of rotation on flexion/
extension x-rays, based on work with a cadaveric
model; however, more recent studies have suggested
2mm as a possible cutoff value for translation.”*

If a patient’s symptoms and imaging findings do not
correlate, further diagnostic studies, such as nerve
conduction studies and electromyography, may be
obtained. Additionally, invasive testing, like discogra-
phy, may identify the pain generator in cases of mul-
tiple degenerative discs, and a positive response to
injections in the epidural space, facet joint, or trans-
foraminal space may further localize the pain genera-
tor. Normal appearing discs on MRI should not gen-
erally be tested with discography. However, it may be
required to obtain “normal” results for the purposes
of validation, in which cases discography on healthy
discs may be necessary. Unless patients have pro-
gressive neurologic deterioration or intractable pain
with correlating imaging findings, most surgeons ad-
vise the patient to undergo non-surgical management
via activity modification, physical therapy, oral anal-

Fig. 3. Sagittal plane translation (A) is measured between straight lines
drawn along two consecutive VBs. The sagittal plane rotation (B) is the
change in the angle formed between lines drawn along the endplates
flanking a disc space on flexion/extension films.

gesics, and/or further steroid injections prior to of-
fering surgical treatment.

Surgical Treatments

Historically, the goal of surgery for spinal pain with
associated clinical and/or radiographic instability has
been bony fusion based on the theory that instability
is due to increased motion. There are many variables
in determining the appropriate surgical procedure
and approach including the symptoms, primary
pathology, global spinal alignment, and surgeon ex-
perience. In fusion surgery, instrumentation is often
used, and this serves as a temporary stabilizing scaf-
fold until bony arthrodesis occurs. Although the goal
of arthrodesis is also to correct and/or prevent defor-
mity, it may lead to imbalances in the normal physio-
logical curves and this can weaken the other stabiliz-
ing structures, which thereby increases stress on ad-
jacent segments. In fact, symptomatic adjacent seg-
ment disease (ASD) has been observed in up to 25%
of patients with cervical fusions and 36% of patients
with lumbar fusions.**”

Instrumentation is mostly composed of posterior
screw-and-rod systems. The strength of these can-
tilever constructs is largely from anchorage into the
pedicle and is proportional to the rigidity of the con-
nected system. Pullout strength of pedicle screws is
related to variables such as the length, diameter,
thread count, trajectory, use of transverse connec-
tors, and bone mineral density.”>* In the subaxial cer-
vical spine, posterior screw options include lateral
mass, translaminar, and, particularly at C7, pedicle
screws. In the thoracic spine, smaller pedicles and ar-
ticulation with the rib heads have led to the adoption
of many different screw trajectories. The extrapedic-
ular technique encompasses the transverse process,
rib head, pedicle, and VB which, in theory, may re-
sult in greater pullout strength compared to screws
placed purely transpedicularly; but, biomechanical
data comparing the two techniques is equivocal.™
Additionally, two primary sagittal trajectories are
employed: the “anatomic” trajectory which follows
the angle of the pedicle, and the “straight-forward”
trajectory, in which the screw tip is aimed towards
the superior endplate and is thought to provide
greater pullout strength® (Figure 4). In the lumbar
spine, the trajectory in the axial plane is most influ-
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ential, as triangulated trajectories converging toward
midline, when transversely connected, have greater
pullout strength than straightforward screws aimed
toward the lateral portion of the VB.* Additionally,
rigidity of the posterior construct is related to rod di-
ameter and stiffness, as larger diameter rods lead to a
more rigid construct.”

There has been increased use of interbody approach-
es utilizing autograft bone, allograft bone, synthetic
implants, or a combination. The anterior interbody
approach is frequently used for cervical spine pathol-
ogy with good results.™* Cervical interbody im-
plants are generally buttressed with an anterior lock-
ing plate, which is believed to reduce graft migration,
increase fusion rates, and act as a tension band.” In
the lumbar spine, anterior-only instrumentation is
not as common as posterior approaches, with or
without interbody grafts. As with posterior instru-
mentation, anterior constructs provide more stability
in flexion and lateral bending than in extension and
axial rotation.” Combined anterior/posterior ap-
proaches are sometimes utilized in cases of severe
pathology, although these cases are more common in
traumatic fracture-dislocation injuries, significant VB
destruction from tumors, or planned iatrogenic
destabilization for neural decompression.

Lumbar interbody cages may be used to restore ante-
rior column height, provide indirect decompression
of the neural foramen, and house cancellous bone
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Fig. 4. In the sagittal plane, thoracic pedicle screws may be placed with an
“anatomic” trajectory or a “straight-forward” trajectory, which may
influence the pull-out strength.

graft to facilitate fusion. Cages placed posteriorly can
be bilateral (posterior lumbar interbody fusion) or
unilateral (transforaminal interbody fusion), although
there is limited data on whether outcomes differ be-
tween these two techniques. Regardless, it is impor-
tant that the cage should not excessively shield the
bone graft from stress, which is required to promote
appropriate bone remodeling.*” Another risk of inter-
body cage insertion, both in the cervical and lumbar
regions, is cage subsidence into the cancellous bone
of the adjacent body.* This risk may be minimized
with judicious removal of the bony endplate, particu-
larly at the periphery.” Migration of lumbar fusion
cages also presents a clinical complication, and this
has been shown to be affected by both the cage
shape, and the positioning of the device.**

Alternatives to arthrodesis include non-rigid posteri-
or stabilization such as dynamic pedicle screw fixa-
tion, interspinous process distraction, and disc
arthroplasty (i.e. total disc replacement (TDR)). The
goals of these systems are to restore physiologic
ROM (via the TDR) or limit motion without a fusion
(via interspinous process distraction or dynamic
pedicle screws) in order to alleviate symptoms and
minimize the risk of ASD.” These devices also rely
on preservation of the stabilizing structures (i.e. liga-
ments, muscle), so meticulous surgical exposure is
required for optimal outcomes. Pre-clinical and in-
vitro studies have not correlated well to improved pa-
tient outcomes. In the lumbar spine, both fusion and
TDR devices are approved by the FDA for the treat-
ment of back pain from degenerative disc disease,
since the disc is believed to be a common pain gener-
ator. However, in a 2013 Cochrane review on TDR
for chronic discogenic low back pain, Jacobs et al. re-
ported that compared to fusion, TDR did not result
in improvements above a clinically meaningful
threshold for pain relief, quality of life, or disease-
related disability.® Additionally, ASD was found to be
inadequately studied, and much of the research on
TDR has been via clinical trials, where stringent pa-
tient selection limits the generalizability of findings.
The authors concluded that there is a great need for
higher quality studies with less conflict of interest in
this area.

In the cervical spine, TDR is not recommended as a
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treatment for axial neck pain from degenerative disc
disease, but rather is reserved for patients with neu-
rologic dysfunction (radiculopathy and/or myelopa-
thy) from single level disc compression. Therefore,
both anterior cervical discectomy with fusion
(ACDF) and TDR can be used to achieve the same
goal. Clinically, results are evaluated through patient-
reported outcomes and objective physical exam find-
ings. Biomechanically, success is largely measured by
maintenance of the physiologic parameters presented
above (segmental lordosis, ROM, disc space height),
with the ultimate goal reduced frequency of ASD,
and, therefore, lower rates of adjacent level surgery.

A recent meta-analysis of eight randomized con-
trolled trials on cervical TDR and ACDF concluded
that TDR was equivalent, or superior, to ACDF
based on levels of reported pain, neurologic improve-
ment, and rates of reoperation.*® However, it should
be noted that while differences in pain levels based
on the subjective outcome of visual analog scales
were statistically significant, the difference was small
and may not have been clinically meaningful. Addi-
tionally, there was no significant difference between
groups in neck disability index scores, a validated,
objective measure of disability from neck pathology.
A second meta-analysis did not find any differences
in patient-reported outcomes between the two
groups, but did find ACDF to have higher rates of
subsequent surgery for ASD.” Conversely, a more
recent meta-analysis found no difference in the rates
of ASD requiring surgery between the two proce-
dures at two to five years follow up.”® Another diffi-
culty in evaluating TDR is that virtually all studies to
date have had limited follow up. Most published tri-
als have used 24-month outcomes, although a recent-
ly published 48-month study maintained similar re-
sults.” Biomechanically, given that the TDR makes
use of a mechanical device, which is relied upon for
maintained structural support, the need for long-
term outcomes and reoperation rates is paramount.
Laboratory studies using biological specimens are
limited in the number of cycles a device can be inter-
rogated, while the number of cycles experienced in a
patient’s lifetime is unknown and likely many times
higher. It is, therefore, important to collect long-term
clinical data, in order to fully understand the implica-
tions of TDR compared to alternative treatments.

Given increasing economic pressures and proposed
limitations to healthcare spending, it is more impor-
tant than ever to ensure that new devices do not jusz
meet current standards, but surpass the outcomes of
their predecessors. The equivocal results between
TDR and fusion for both low back pain and cervical
pathology highlight the need to review and critically
understand how laboratory-based multi-axis spinal
testing is used in order to predict clinical success,
and how it may be modified to better simulate the in-
vivo environment in future studies.

Multi-Axis Biomechanical

Testing

The aims of basic research using in-vitro spine test-
ing are to understand more about the biomechanics
of the healthy spine, the effects of injury and/or de-
generation, and to assess the effectiveness of new
spinal devices. The biomechanics of spinal speci-
mens is significantly affected by many factors in the
laboratory, including the application of a physiologi-
cal preload,’®”™ the testing velocity,”” the specimen
moisture condition,”* and the specimen tempera-
ture.” It has also been shown that the exposure peri-
od, and the number of test cycles a specimen is sub-
jected to can significantly alter its biomechanical re-
sponse.® In spite of the increased understanding of
how in-vitro test conditions affect spine biomechan-
ics, it is challenging, and often impossible, to com-
pare different in-vitro studies because of these con-
siderations. Further, translating the findings of in-
vitro studies to the clinical environment can be prob-
lematic if in-vivo conditions have not been replicated
fully. Moreover, there is a similar problem if the bio-
mechanical responses from such testing is not con-
sidered in the context of the experimental conditions.

Efficacy testing is a critical addition to the current
barrage of pre-clinical testing standards, and for such
testing to have the greatest clinical impact, it is cru-
cial that testing methodologies replicate all aspects of
the in-vivo environment. Dynamic testing standards
for spinal devices generally require that spinal de-
vices be tested dynamically, in a test fluid at 37°C,
with an axial preload."'* However, biomechanical
testing is often performed at sub-physiological

INTERNATIONAL JOURNAL OF SPINE SURGERY 7/21



DOI: 10.14444/2034

speeds, without a physiological preload, and in tem-
perature and moisture conditions that are not physio-
logical. Wear and fatigue tests are not used to repli-
cate complex spinal loading but instead to provide
approximate conditions that are highly repeatable.
Biomechanical testing should take into account as-
pects of standardization from the test standards and
apply more clinically relevant conditions in order to
better inform the clinical arena as to the likely out-
comes as a result of degeneration, injury, or treat-
ment. Currently, this link is not as strong as it could
or should be.

Simulating In-Vivo Conditions

It is well-understood that the spine is subjected to
large compressive loads due to the weight of the head
and torso, combined with the effect of muscle forces
that provide stability.**** The stiffening effect of a
physiological preload on spinal specimens in-vitro
has also been well-documented in the literature in
the lumbar,”” thoracic,” and cervical™” regions of
the spine, and through the application of a preload
via an axial force,”*”" a follower-load,”>” and simulat-
ed muscle forces.””

The method used to apply a preload has been shown
to affect specimen biomechanics,* with uncon-
strained preloads generating large moment and low
shear force artifacts, and constrained preloads doing
the opposite. Therefore, it is important to consider
the most appropriate method, with minimal “side ef-
fects” when designing a testing protocol. It has been
suggested that whilst a physiological preload should
be applied when possible, a fair comparison can be
obtained without it, provided specimens are tested in
a similar manner in the intact state and with spinal
instrumentation.” Indeed, many studies have adopt-
ed such a technique.**° However, if a primary con-
cern of the spinal surgeon is stability, which may be
affected by the magnitude of axial loading, the poten-
tial instability of spinal devices may go unnoticed
without an appropriate physiological preload in-vitro.
The transfer of load between the IVD and the facets
is also significantly altered by the application of an
axial preload,” and by mechanically stimulated de-
generation of the IVD.*” Both of these aspects are a
key part of understanding the mechanical behavior of
the spine, spinal degeneration, and therefore, treat-

ment.

Different postures change the axial load that is trans-
mitted through the spine in-vivo. Intradiscal pressure
has been shown to increase in-vivo as a result of al-
tered postures,’** with forward bending approxi-
mately doubling the load through the disc compared
to relaxed standing.””* This occurs due to increases
in the lever arms of the upper body in relation to the
center of rotation (COR) of the different levels of the
spine, and the resulting increase in muscle activity
that is established in order to resolve these changes,
as well as possible alterations in the load transfer
through the disc and the facets. These complex inter-
actions of load transfer between the spinal structures
should be considered when applying a preload in-
vitro, and relate to the compromise between moment
and shear force artifacts. Such artifacts may relate to
the effect of muscle forces in-vivo, which are difficult
to adequately replicate in the laboratory setting. In-
creased artifact moments may produce inaccuracies
in ROM and the resulting stiffness/flexibility data,
whereas increased shear forces may alter the COR
and engagement of the facets. Either or both of these
may lead to inaccuracies in the load-sharing between
the anterior and posterior elements of the spine com-
pared to the in-vivo environment. However, these
limitations may still be advantageous over not apply-
ing any preload at all. Similarly, the length of load ap-
plication during testing also affects the biomechani-
cal response of individual tissues and the spine as a
whole, given the possibility for creep and the effects
of the fluid behavior in the IVD and soft tissues.

The stiffness of spinal specimens is also significantly
affected by the moisture conditions.”* Pflaster et al.
reported human lumbar isolated disc specimens (IS-
Ds), comprising a functional spinal unit (FSU) with
the facets and posterior structures removed, could be
maintained at approximately post-mortem mass
through submersion in saline solution with the appli-
cation of a 445N preload, or sprayed with saline and
wrapped in plastic.” However, in that study, neither
the stiffness nor the flexibility of the specimens was
compared between the different moisture conditions.
Wilke et al. demonstrated that spraying ovine FSUs
with saline solution and wrapping them in plastic led
to little change in flexibility (<10%) in axial rotation
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compared to air-exposed (~30%) or saline-submerged
(~30%) specimens over 500 test cycles.** However,
this lack of effect may not reflect the complete pic-
ture with regards to different moisture conditions;
since those tests were performed without a physio-
logical preload, the facets would have contributed to
the majority of the stiffness in axial rotation.” In
addition, the IVD stiffness in axial rotation is pre-
dominantly related to the elastic response of the an-
nulus fibrosus, rather than a fluid response in the nu-
cleus pulposus. Therefore, prolonged testing along
different axes, such as flexion/extension, may result
in greater differences in flexibility due to moisture
conditions. Holsgrove et al. performed stiffness ma-
trix testing of porcine FSUs and ISDs without a pre-
load and also with a 500N preload after 30 minutes of
equilibration, and then repeated the testing after a to-
tal preload application time of 60 minutes.” This
study demonstrated that the initial application of the
preload had a large effect in all six axes for both types
of specimens, but the increased application time also
significantly changed the stiffness in all primary axes,
with the exception of anterior/posterior shear. The
largest differences were increases of 40-60% in flex-
ion/extension and lateral bending, which are re-
sponses affected most by the fluid phase compared to
other axes. Shear and axial rotational stiffness terms
were reduced by between 0-4%, which related to the
creep of the elastic tissues of the annulus fibrosus.
This emphasizes that not only is it important to en-
sure appropriate moisture conditions are maintained
during in-vitro tests, but also that the large effects of
the fluid response that is a factor in prolonged load-
ing must be considered when designing and imple-
menting testing protocols.

Similar interactions of the solid and fluid phases of
the human IVD have been reported by Costi et al. as
a result of changes in loading rate from 0.001Hz to
1Hz in all six axes with the application of an axial
preload in a fluid bath at 37C.” The stiffness in ante-
rior/posterior shear, lateral shear, and axial rotation
increased by 26-35%, which are responses that are
primarily governed by the so/id phase of the IVD); in-
creases of 29-83% were reported for axial compres-
sion/extension, lateral bending, and flexion/exten-
sion, which are primarily governed by the fluid re-
sponse of the nucleus pulposus. Similar increases in

stiffness in the neutral zone of human FSU speci-
mens were reported by Gay et al. due to an increase
in test frequency from 0.5-6.0°/s in pure moment
testing in the sagittal plane.”

The temperature of specimens also has effects on the
measured stiffness. Bass et al. reported that the stiff-
ness of the ALL was 38% greater at 21.1°C compared
to 37.8°C.** Although some in-vitro testing has been
completed at body temperature, most studies use
room temperature due to the relative ease by which it
can be achieved and maintained. The effects of tem-
perature may be more reasonably extrapolated to the
in-vivo situation compared to other test factors.
However, as with the moisture condition, the tem-
perature of spinal devices, such as UHMWPE bear-
ings, or elastomeric devices, may behave in an alto-
gether different manner at room temperature than at
body temperature. The testing frequency and pre-
load magnitude has also been shown to affect the
sagittal bending properties of the elastomeric Cadisc
TDR,” highlighting the notion that replicating the
in-vivo environment is critical to understanding not
only the properties of the natural spine, but also its
properties with spinal instrumentation, and ultimate-
ly, the effects of the instrumentation.

In addition to the testing conditions, the type of
specimen used is an important factor in biomechani-
cal studies and their interpretation. Both single-level
and multi-level specimens are commonly used in in-
vitro spinal testing. Single-level testing provides a
useful means to assess the spinal structures, and may
enable highly accurate positional data to be acquired
directly through the testing apparatus. Multi-level
testing requires additional measurement techniques
to acquire the motion of individual vertebrae, most
commonly in the form of a multi-camera and marker
system.

Dickey and Kerr reported that although the stiffness
of single-level L3-L.4 specimens was not significantly
different from the stiffness of that same spinal level
when it was considered as part of a multi-level speci-
men, the neutral zone and ROM were significantly
greater in single-level specimens and multi-level
specimens with resected supraspinous and inter-
spinous ligaments.”” Single-level specimens have
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been tested in-vitro as both FSU and ISD specimens;
comparisons between these specimens has shown
that the facets and posterior ligaments provide sub-
stantial components of stability to the spine in all six
DOF.*** Comparisons of ISDs with a fusion device
or TDR will allow direct comparison of the intact
structures and the effect of replacing those struc-
tures. Testing the same devices in multi-level spinal
specimens with the facets and posterior elements
make direct comparisons of the intact disc and the
device more difficult, but provide important informa-
tion on how the device performs in the whole spine.

It is important to consider the relevance of spinal
specimens used in in-vitro testing, and how findings
translate to clinical practice. Many in-vitro studies
use human cadaveric specimens of advanced years,
which may themselves have some degree of degener-
ation because of the natural history. It has been
shown in-vitro that higher vertebral bone density re-
lates to better stabilization,” and that the level of disc
degeneration significantly alters the rotational stiff-
ness of FSUs about all three axes.”®” Porcine”**'®
and ovine®"'! specimens have both been commonly
used as alternatives to human specimens. These
species can provide similar quality of motion in many
aspects of spinal testing, and there is much greater
repeatability between specimens compared to human
cadavers. However, care must be taken to choose an
appropriate species for the testing purpose, to pro-
vide the most relevant translational value to the clini-
cal setting.

Although the studies reviewed above present the
possible confounding effects of individual aspects
and factors of the in-vitro testing environment, there
are few published studies that have completed dy-
namic, multi-axis testing that also simulate the physi-
ological preload, temperature and moisture condi-
tions that are representative of the in-vivo environ-
ment. This may be due to certain impracticalities re-
lated to the measurement of variables in such condi-
tions, or because of more indirect factors such as
time and expense. Of all of the individual factors, axi-
al preload has the greatest effect on the biomechanics
of spine specimens, with increases in stiffness of over
100% in flexion/extension, lateral bending, and axial
compression/extension.”” However, the application

of a physiological preload is also one of the more dif-
ficult aspects to achieve in in-vitro testing, with dif-
ferent methods of application leading to different ar-
tifacts. As such, it is critical to carefully consider and
report those methods.

Systems & Experimental Approaches

There are four major types of multi-axis testing ma-
chines that have been used for spinal testing (Figure
5): (1) translational platform and gimbal assemblies,
which may have passive shear axes,”'**'** may be ful-
ly active in all six axes,'*'”” or may use clutches to
operate with axes in either passive or active modes;”
(2) hexapod testing machines;'**'” (3) robotic-arm
systems;"*"" and (4) pulley arrangements.**>"*"*
While no single testing machine is more appropriate
than another, an appreciation of the advantages and
disadvantages of each for the testing of specific spinal
devices, along with appropriate documentation, will
assist in the comparison of studies using different
machines. Both position- and load-control methods
have been used to test spine specimens, and both
have advantages and disadvantages." Position con-
trol has been adopted for both quasistatic and dy-
namic tests. Load control generally requires a greater
level of sophistication than position control, due to
the unknown stiffness/flexibility of the specimen pri-
or to its testing; as such, control methods developed
to test spinal specimens in full six-axis load control
have been limited in terms of applying dynamic load-
ing.106,109,111 Hybrid control methods have also been
adopted, using position control for the primary axis,
and operating the non-primary axes in load con-

trol; "> though this method still requires a high
level of computation during each control iteration
compared to six-axes position control, and testing us-
ing this method has been slower than the 0.5-5.0°/s
rate recommended by Wilke et al." However, if high-
er test rates can be achieved, the advantage of com-
bining control modes for different axes is more bene-
ficial than simply completing tests at physiological
speeds. Utilizing position control along the primary
axis enables greater consistency across multiple tests,
by ensuring the same cycle velocity, thus minimizing
viscoelastic effects whilst also minimizing artifact
forces and moments through the use of load control
in non-primary axes.
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There are two predominant methods used for spinal
testing in six DOF: the stiffness matrix method; and
the flexibility matrix method. In the stiffness matrix
method, defined translations and rotations are ap-
plied to a specimen in one axis at a time, with all oth-
er axes constrained, and the resulting forces and mo-
ments are measured in six axes."”®"® The flexibility
matrix method requires the inverse, with defined
forces and moments applied in one axis at a time, and
the resulting unconstrained translations and rota-
tions measured in six axes."®"” Both methods use da-
ta from testing in each of the six axes to calculate ei-
ther the stiffness or the flexibility in a 6x6 matrix.

Whilst these methods result in 36 terms, half are as-
sumed to be zero due to sagittal plane symmetry, for
example, the lateral shear force during flexion/exten-
sion would be expected to be negligible. The remain-
ing 18 terms comprise the six principal terms, and 12
non-principal terms: The principal terms are those
directly related to the test axis, for example the term
calculated from the anterior/posterior translation
and the resulting anterior/posterior shear force, or
that calculated from flexion/extension rotation and
the resulting flexion/extension moment; the non-
principal terms relate to the coupled behavior of the
specimen, for example, the stiffness due to anterior/

Moving Platform

I

Linear Encoder

Specimen
In Bath

Fig. 5. Examples of a six-axis spine testing machines using a dual axis
actuator, an active XY platform, and a gimbal (top-left),” a hexapod system
(top-right),'® a robotic arm (bottom-left),"" and a pulley system
(bottom-right).*

posterior translation and the resulting flexion/exten-
sion moment.

The first studies to adopt stiffness and flexibility ma-
trix testing methods assumed matrix symmetry
based on the conservation of energy,'**"* However,
the conservation of energy assumption is based
around infinitesimal rather than finite displacements,
and is not applicable over normal physiological
ROM,; due to the complex interaction of different
spinal structures.”"*'** The facets play a substantial
role in guiding motion in all three anatomical planes,
resulting in an asymmetric matrix. However, even
with the facets and posterior elements removed,
porcine ISDs have asymmetric stiffness matrices
over normal ranges of motion,” due to the geometry
and the combination of elastic and fluid phases of the
disc that govern the mechanical behavior.

Although stiffness and flexibility matrices are in-
versely related, the constraint under which tests are
completed differs, with stiffness matrices using a
fixed COR, and flexibility tests using a non-defined
and unconstrained COR. Unconstrained bending
moments have been shown to increase stiffness com-
pared to constrained moments in ovine FSUs,'*
which may be due to the structure of the facets and
the soft tissues being predisposed to resist motion to
a greater extent about the natural COR compared to
circumstances of constrained loading. These differ-
ences, combined with other constraints that may be
applied in the laboratory setting, such as the method
of preload application, mean that it is often difficult
to compare studies using different testing methods.

The stiffness matrix method has been used to charac-
terize the mechanical properties of single-level mo-
tion segments statically,'” quasistatically,”*"'*® and
dynamically.”>'”” However, although the stiffness ma-
trix protocol characterizes the mechanical properties
of a spinal specimen in six DOF it does not necessar-
ily apply physiological motions,"® and is inappropri-
ate for multi-level specimens. The advantage of the
flexibility method is that the COR does not need to
be defined, nor is it fixed during testing. It is more
common for flexibility testing to focus solely on the
application of moments, referred to as “pure mo-
ment testing,” and this provides a way of effectively
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testing multi-level specimens, which is important in
understanding the spine and its overall and localized
responses to loading, naturally or via injury and/or
treatments.***11%

It is increasingly understood that the quality of mo-
tion, in addition to the quantity of motion, should be
considered both in in-vitro testing"*"**'*” and in-
vivo."””® Such considerations relate to the non-linear
response of spinal tissues under load, and the vari-
able COR about which motion occurs. Quality of mo-
tion assessments are now relatively common for in-
vitro spinal testing, and more in-vivo quality of mo-
tion assessments would provide valuable data in
terms of investigating how the pre-clinical efficacy
testing of new spinal devices translates to the clinical
setting.

A key area of research for multi-level specimen test-
ing is to investigate the adjacent segment behavior
following arthrodesis or total disc replacement. Pan-
jabi et al. developed the hybrid method to investigate
adjacent segment effects,'” which consisted of apply-
ing a pure moment to multi-level specimens and us-
ing the resulting global ROM as the input criteria to
test the specimen following implantation of spinal in-
strumentation. This method has been used to assess
TDRs and fusion procedures in-vitro, but has gener-
ally been performed without a follower-load, which
may have limited adjacent segment effects post-
operatively compared to the clinical setting. O’Leary
et al. demonstrated that while the ROM due to pure
moments in the sagittal plane increased significantly
both without and with a 400N follower-load as a re-
sult of implanting a Charité TDR, application of the
follower-load increased the lordosis angle significant-
ly from 12.6° in the intact condition to 20.7° with the
TDR at L5-S1."* Similar increases in lordosis at the
operative level have been reported clinically,” and
should, therefore, be regarded as an important aspect
of in-vitro testing under a physiological preload.

Combined and asymmetric loading relate to an in-
creased likelihood of injury.”’ However, combined
loading is not commonplace in in-vitro spinal testing,
which may be due to limitations in testing equipment
and the difficulty in comparing different loading pro-
tocols. Nevertheless, it has been shown that com-

bined loading behavior cannot be easily predicted
from known behavior in individual axes,"*"" and fu-
ture testing protocols should account for this in addi-
tion to testing axes individually.

Both stiffness and flexibility protocols have limita-
tions in terms of fully replicating in-vivo conditions.
Pure moment testing allows test cycles to occur
about an unconstrained COR, and although Wilke et
al. demonstrated that pure moment testing without a
preload replicates qualitative aspects of in-vivo load-
ing,"” muscle force simulation was recommended to
reproduce in-vivo loading more accurately. In-vitro
research has provided valuable data by using muscle
force simulation to minimize artifact moments and
forces,'” though optimally applying generalized mus-
cle forces in the laboratory is a challenging and com-
plex issue, and simplifications in the application of
muscle groups may lead to inaccuracies in replicating
the in-vivo environment. Applying complex displace-
ments in six DOF offers an alternative methodology,
and current advances in imaging techniques means
that the in-vivo kinematics of vertebrae can be ob-
tained dynamically, and in three dimensions.”?*"*'¥
However, there remains a similar difficulty in gener-
alizing such kinematics in the laboratory setting,
when large inter-subject variations may occur as a re-
sult of degenerative pathology or spinal injury.

The complexity of the spine compared to other
joints, such as the hip and knee, means that patholo-
gy due to mechanical and/or degenerative factors of-
ten occurs in a multi-faceted manner, with a direct
mechanism being difficult to determine. This, in
turn, increases the difficulty in designing clinically
relevant in-vitro studies in a standardized manner.
However, a greater understanding of the three di-
mensional kinematics and loading of the spine in-
vivo, and advances in the technology relating to
multi-axis testing systems provide great potential for
simulating in-vivo biomechanics of the spine in the
laboratory more accurately and better than ever be-
fore. Indeed, for many cases, including degeneration
and disease, it is possible to utilize in-vivo imaging of
patient populations to gather more information - es-
pecially since clinical imaging techniques are similar-
ly improving with better spatial and temporal resolu-
tion. Increased collaboration between clinicians, sci-
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entists, and engineers provides the opportunity to
further develop appropriate standardized testing pro-
tocols in relation to the surgical practice, with the
aim of improving patient outcomes driving the direc-
tion of future research.

Case Studies

Having presented the clinical and biomechanical per-
spectives and considerations earlier in this review, it
is useful to highlight several examples that point to
the tight connection between them. Here we briefly
present three examples in which the coordinated or
iterative efforts between basic science and clinical re-
search would, or will, provide benefit to the ultimate
success for patient care. Certainly, these examples
are only intended to highlight different connections
and disconnects and to provide a thought-provoking
perspective.

Anterior Cervical Plate Failure

Anterior cervical plates are used to reinforce anterior
cervical constructs during cervical fusion in cases of
fusion across an IVD, or in cases of VB replacement.
Although surgeons understand the risk of construct
failure at the bone-screw interface, and the effect of
screw-orientation and plate design on the screw-bone
interface has been investigated in-vitro,"** the poten-
tial failure of the plate-screw assembly is less well un-
derstood. The ASTM 1717 standard is the pre-
clinical testing protocol required for spinal implant
constructs," in which the device is secured to stan-
dard polyethylene blocks and subjected to three stat-
ic loading tests and a single cyclic fatigue loading ex-
posure. The scope of the testing standard specifically
states that “the results obtained here cannot be used
directly to predict in vivo performance. The results
can be used to compare different component designs
in terms of the relative mechanical parameters.”"

There is anecdotal evidence of plate failure at the
screw-plate interface," and reported cases of screw
failure."*** Human cadaveric testing, under physio-
logical loading conditions prior to clinical use, may
have provided valuable data regarding such failures,
and allowed a greater understanding of how they may
be avoided.

Dynesys Spinal System

Biomechanical testing protocols are further compli-
cated when non-traditional systems are assessed.
Specifically, polycarbonate urethane spacers used in
conjunction with titanium pedicle screws and a poly-
ethylene terephthalate tensioning cord in the Dy-
nesys Spinal System (Zimmer Spine Inc., Warsaw,
IN) has required a re-analysis of pre-clinical testing
systems. In general terms, rigid metal spinal fixation
devices do not change their stiffness over time, but
biomechanical testing of the Dynesys demonstrated
creep in the spacer, and stress relaxation in the ten-
sioning cord,"*? and changes in stiffness with different
diameter spacers.'

Clinically, the posterior non-rigid fixation systems
were designed to function as motion preservation de-
vices, and while initial clinical outcomes were
promising,* evidence regarding the stiffness and
ROM at the instrumented level**'* has led to these
devices being re-categorized as posterior dynamic
stabilization devices. Further research is required re-
garding the adjacent level effects compared to tradi-
tional posterior stabilization procedures.'**"*

Total Disc Replacement

Despite the emergence of TDR procedures as a vi-
able alternative to fusion procedures over 30 years
ago, the conclusive evidence is still lacking to suggest
relevant improvements in clinical outcomes.® Various
in-vitro multi-axis studies have compared spinal
specimens in the intact condition and after a TDR,
but these have generally been completed without ful-
ly simulating the physiological situation. Increased
lordosis observed clinically after lumbar TDR has al-
so been documented when a 400N follower-load is
applied in in-vitro tests.”** More data describing the
performance of TDR devices under such conditions
may better inform the scientific community of the ef-
ficacy of new devices prior to their clinical use. Like-
wise the anatomical placement of TDRs has been
shown to significantly affect clinical outcomes,'*’ and
more in-vitro data concerning intra-operative vari-
ables would be valuable in determining the sensitivity
of a device to adverse conditions.

Recommendations &
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Conclusions

The in-vivo spinal environment is difficult to fully
replicate in an in-vitro setting, even for short-term
testing. This is complicated further by the “real
world” variables, such as obesity, poor healing condi-
tions, aberrant spinal loading conditions, and iatro-
genic factors that the surgeon faces with each case.
Minimum pre-clinical testing standards for new
spinal instrumentation are well-established in terms
of wear, fatigue, and yield testing standards, but it is
not within the scope of these standards to assess the
efficacy of a new device, nor to subject a device to the
entirety of in-vivo loading conditions and possible
clinical scenarios. This disconnect can lead to the
failure of commercially available and FDA-approved
devices," but can also lead to limited clinical im-
provement of new devices over existing products
over the long-term.”®

It is important that both communities (basic science
and clinical) continue to refine efficacy testing proto-
cols through standardized procedures, so that instru-
mentation is tested under a variety of physiologically
relevant conditions, including “worst-case” scenar-
ios. These conditions should reflect the potential
clinical scenarios and possibilities; developments in
imaging techniques and post-operative follow-up can
also assist in identifying key variables with influence,
such as improper instrumentation placement, incom-
plete instrumentation construction, excessive instru-
mentation preload, and use in non-approved condi-
tions, for example, with other instrumentation types
and/or procedures. Such sensitivity analyses will aid
in understanding how certain instrumentation may
be better suited to improve clinical results.

It is also critical to continue to assess new devices in
terms of their efficacy. Such testing, however, must
replicate a/l aspects of the in-vivo environment,
among them the physiological preload. It is para-
mount, as with all details of laboratory experiments,
that the method and magnitude of preload applica-
tion be clearly documented and justified in order to
allow both reliable replication and comparison with
other studies, but also to provide appropriate context
for interpreting findings with respect to the clinical
setting. Furthermore, in-vitro testing should not be

:10.14444/2034

limited to assessing ROM, stiffness, or flexibility, but
must compare the subtleties of the non-linear behav-
ior of spine in order to provide a more robust transla-
tion of spinal biomechanics from the lab to the clinic.

Regardless, as technology continues to advance in
both the laboratory and clinical arenas, it is impor-
tant to continue to obtain increased data in six DOF
and under dynamic conditions, in both specimens
and human patients. Such efforts will undoubtedly
provide a greater understanding of the spine, but also
enable coordination between communities to better
describe spinal biomechanics and understand the ef-
fect of degenerative pathology and treatments. More-
over, such clinical data will provide valuable inputs
for in-vitro studies, particularly in relation to quality
of motion, and improved laboratory testing condi-
tions will also inform how to better manage spine dis-
order. In summary, improving the link between
multi-axis biomechanical testing in-vitro and imaging
studies and treatment of spine conditions will pro-
vide greater partnerships, improved translation of in-
vivo to in-vitro data, and assist in the iterative devel-
opment of future spinal devices and improved spine
care.
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