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Is there an antinociceptive role for peripheral brain-derived
neurotrophic factor?
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Chronic pain has a high incidence and significant costs
[1]. Treatments remain hindered by limited efficacy and/
or side effects [2], and no clear understanding of the
cellular mechanisms involved. Targeted destruction of spe-
cific neuronal populations can help define cellular mecha-
nisms and may be an effective modality to treat pain.
Ablating agents, such as saporin and resiniferatoxin
(RTX), are used to target specific neuronal populations
[3–5]. The capsaicin analog, RTX, selectively ablates
neurons that express the vanilloid receptor-1 (VR1) via sus-
tained Ca2þ influx [5–7]. The VR1 is a ligand-gated, non-
specific cation channel in small- and some medium-sized
neurons in the dorsal root ganglion (DRG) [5]. The VR1 in-
tegrates nociceptive stimuli and is sensitive to heat, protons,
capsaicin, bradykinin, nerve growth factor, and other stim-
uli [8]. Accordingly, VR1-positive neurons are involved in
the development and/or maintenance of pain. Resinifera-
toxin effectively abolishes thermal hyperalgesia and differ-
entially attenuates mechanical allodynia in many pain
models [5,9–11]. For example, intrathecal RTX is analgesic
in a canine bone cancer model [9], and perineural applica-
tion of RTX to the sciatic nerve prevents the development
of inflammation-induced thermal, but not mechanical, hy-
peralgesia in the rat [5]. Previously, Tender et al. [10]
showed that direct injection of RTX into lumbar DRGs
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reversed thermal hyperalgesia that was induced by a photo-
chemical sciatic nerve injury but only partially mitigated
mechanical allodynia. That finding provides a foundation
for Tender’s present study investigating brain-derived neu-
rotrophic factor (BDNF) in RTX-mediated neuropathic
pain suppression because BDNF is localized in small-
and medium-sized DRG neurons [12–14].

Brain-derived neurotrophic factor is a peripherally de-
rived modulator of sensory neurotransmission that pro-
motes the survival, growth, and differentiation of neurons
[15]. Several neurotrophins, including BDNF, are also in-
volved in nociception and synaptic plasticity [15–19].
Brain-derived neurotrophic factor is endogenously pro-
duced in the periphery mainly by small unmyelinated neu-
rons. It is packaged into dense core vesicles that undergo
anterograde transport to presynaptic terminals in the dorsal
horn of the spinal cord, where their release is stimulus de-
pendent [15,20]. Peripheral stimulation of primary afferents
causes release of BDNF at central synapses, where it acts
through its high-affinity receptor, tyrosine kinase B, to sen-
sitize excitatory transmission through the phosphorylation
of glutamatergic postsynaptic receptors [15]. Brain-
derived neurotrophic factor can also act presynaptically to
increase excitatory neurotransmitter release in the dorsal
horn. Inhibition of spinal BDNF-induced tyrosine kinase
B activation through BDNF sequestration prevents pain de-
velopment and abolishes existing pain [14,18,19]. Consid-
ering that BDNF release alters central synaptic efficacy
based on peripheral stimuli, BDNF is a key regulator
throughout the nervous system.

Painful peripheral insults directly and indirectly modify
BDNF in the DRG and spinal cord. In neuropathic pain, ex-
pression of BDNF in neurons in the DRG shifts from its
normal expression, which is primarily in small-diameter
tyrosine kinase A–positive neurons, to expression in larger
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diameter neurons, a shift that is also seen in inflammation
[12,13,21,22]. This phenotypic shift suggests that a redistri-
bution of BDNF in the DRG may influence cellular sensi-
tization involved in pain. In fact, BDNF expression shifts
from the smaller afferents of the joint capsule to the larger
ones after facet joint inflammation [22]. Other groups have
characterized BDNF expression after sciatic nerve transec-
tion [12,13,21], a neural trauma that produces behavioral
sensitivity early after injury that is sustained for at least
3 weeks [23,24]. A phenotypic switch in neuronal expres-
sion of BDNF has been observed in those pain models
similar to that described by Ohtori et al. [22] for the joint
inflammation but was also accompanied by upregulation
in the spinal cord as early as 1 day after injury
[12,13,21]. That shift in BDNF expression from smaller-
to larger-diameter neurons has been proposed to contribute
to the initiation or maintenance of pain [12,13,22]. Spinal
sensitization can also result from sprouting of the non-
nociceptive large-diameter neurons into the superficial lam-
inae of the dorsal horn, a region primarily associated with
nociception [15,25–27]. Although many pain models dem-
onstrate altered BDNF expression in the DRG and spinal
cord, it remains unknown how these changes modulate
pain. For this reason, using RTX to ablate the specific no-
ciceptive neurons can provide mechanistic insight into the
role of BDNF in sciatic nerve pain.

Tender et al. showed that direct injection of RTX in
DRGs reversed thermal hyperalgesia and abolished me-
chanical allodynia induced by a photochemical sciatic
nerve injury. Nerve injury alone increased BDNF expres-
sion in small and medium neurons in the DRG, whereas
for RTX treatment given after injury, BDNF increased in
large neurons [7]. Although they report upregulation of
BDNF that is consistent with other studies of sciatic nerve
injury, the increases in specific neuron populations is not
consistent [12,13,21]. Also, this study reports expression
in normal naive rats to be equally distributed among all
neuron sizes, which is contrary to other reports in which
BDNF expression is limited to mainly small- and
medium-sized neurons [7,12,13,15,21,22]. This discrep-
ancy in the basal response directly affects any conclusions
because the changes in expression that are reported are rel-
ative to a potentially skewed and atypical basal BDNF re-
sponse. The authors also found that in some cases after
injury, allodynia was not induced, but BDNF expression
was upregulated in large neurons and downregulated in
the other neurons. Resiniferatoxin treatment of the allo-
dynic rats that attenuated sensitivity also induced BDNF
upregulation in large neurons and downregulation in the
other neurons, suggesting a relationship between lack of
sensitivity and such responses. But, it is unclear if that de-
crease in the nociceptive neurons is because of their abla-
tion or an actual downregulation of BDNF. Because no
data are provided describing BDNF expression in any of
the neuronal populations in the DRG for vehicle treatment,
it is difficult to interpret any of these findings.
Although RTX selectively destroys VR1-positive neu-
rons, its effect on sensory neurons is dose dependent. In
fact, these same authors reported that RTX given at a lower
dose (0.8 mg) only partially attenuated mechanical allody-
nia [10]. They hypothesized that allodynia persisted despite
RTX treatment because large-diameter Ab-fibers had be-
come nociceptive [10]. If there is indeed an Ab-fiber com-
ponent to nociception in this model as their previous work
suggests, then it should also be present in their current re-
port. Yet, they observed complete abolishment of mechan-
ical allodynia using the higher dose [7], which may indicate
a more widespread (and nonspecific) ablation of additional
fiber populations. Pan et al. [27] reported damage to mye-
linated fibers in the sciatic nerve along with eliminated
VR1-positive neurons after intraperitoneal injection of
RTX in normal rats; although that finding may be because
of systemic administration, it supports a potential nonspe-
cific effect of RTX. Unfortunately, the BDNF responses
for the lower RTX dose were not reported in the previous
study [10], so it is not known if BDNF upregulation in large
neurons is analgesic, or if it serves another function—

perhaps promoting cell survival [28]. Neubert et al. [5] re-
ported that at least 125 ng of RTX applied perineurally was
needed to produce thermal hypoalgesia after peripheral
inflammation, but that 250 ng only partially attenuated
mechanical allodynia. Tender et al. [7,10] found that a five-
fold higher dose was required to abolish allodynia, which
may have abolished mechanical allodynia because of toxic
effects on the large-diameter neurons. Taken together, all
these studies highlight that RTX-mediated analgesia is dose
dependent, and that the conclusions by Tender et al. should
be viewed in that context.

The hypothesis that the shift in BDNF expression to
large-sized neurons in the DRG after RTX is ‘‘analgesic’’
ignores recent insight into spinal contributions. Brain-
derived neurotrophic factor is upregulated in both inflam-
matory and neuropathic pain models in the superficial
dorsal horn, where afferents synapse, and also in deeper
laminae [12,13,29]. Spinal BDNF modulates the excitabil-
ity of neurons and contributes to central sensitization [15];
activated spinal microglia are also a source of BDNF. Intra-
thecal sequestration of BDNF abolishes injury-induced sen-
sitivity, further supporting central BDNF as a regulator of
sensitivity [14]. Because large-diameter neurons can sprout
new connections to the superficial laminae of the spinal
dorsal horn, they activate nociceptive pathways [15,25–
27]. In this way, upregulation of BDNF in large neurons
can be nociceptive. This sprouting could partially account
for the Ab-fiber contributions that Tender et al. [10] previ-
ously hypothesized in this model. Although peripheral
modification of BDNF may be important in pain, it likely
is not the only BDNF-related mechanism. Therefore, fur-
ther investigations of central BDNF with RTX treatment
are needed to determine its role in this and other models.

Despite some limitations in methodology, Tender’s in-
vestigation of the cellular effects of RTX treatment on
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neuropathic pain raises several important considerations.
Although the authors focused on the role of BDNF, they
do acknowledge that other molecules likely play a role in
nociceptive signaling in the nervous system, and that none
act in isolation. Undoubtedly, defining how BDNF and
other neurotrophins and neuromodulators regulate pain in
specific cell populations is key to understanding chronic
pain. Continued efforts are needed to determine the specific
effects and specificity of higher doses of RTX, as well as to
determine whether BDNF is exclusively nociceptive or
antinociceptive, or some combination of both. Understand-
ing that role will help develop potential treatments for both
tissue healing and pain relief, as has been done with other
neurotrophins [30].
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