The equivalence of multi-axis spine systems: Recommended stiffness limits using a standardized testing protocol

Timothy P. Holsgrove a, b, *, Dhara B. Amin c, Sonia Ramos Pascual b, Boyin Ding d, William C. Welch e, Sabina Gheduzzi b, Anthony W. Miles b, Beth A. Winkelstein c, f, John J. Costi c

a Department of Engineering, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Exeter, UK
b Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, UK
c Biomechanics & Implants Research Group, The Medical Device Research Institute, Flinders University, Adelaide, SA, Australia
d School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, Australia
e Department of Neurosurgery, University of Pennsylvania, PA, USA
f Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, PA, USA

Article info
Article history:
Accepted 6 September 2017

Keywords:
Multi-axis
Six-axis
Spine testing
Spine simulator
Test machines
Test systems

Abstract
The complexity of multi-axis spine testing often makes it challenging to compare results from different studies. The aim of this work was to develop and implement a standardized testing protocol across three six-axis spine systems, compare them, and provide stiffness and phase angle limits against which other test systems can be compared. Standardized synthetic lumbar specimens (n = 5), comprising three springs embedded in polymer at each end, were tested on each system using pure moments in flexion–extension, lateral bending, and axial rotation. Tests were performed using sine and triangle waves with an amplitude of 8 Nm, a frequency of 0.1 Hz, and with axial preloads of 0 and 500 N. The stiffness, phase angle, and R² value of the moment against rotation in the principal axis were calculated at the center of each specimen. The tracking error was adopted as a measure of each test system to minimize non-principal loads, defined as the root mean squared difference between actual and target loads. All three test systems demonstrated similar stiffnesses, with small (<14%) but significant differences in 4 of 12 tests. More variability was observed in the phase angle between the principal axis moment and rotation, with significant differences in 10 of 12 tests. Stiffness and phase angle limits were calculated based on the 95% confidence intervals from all three systems. These recommendations can be used with the standard specimen and testing protocol by other research institutions to ensure equivalence of different spine systems, increasing the ability to compare in vitro spine studies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Replicating in vivo loads in the spine is a critical aspect of in vitro spine testing; however, the complexity of the mechanical properties of the intervertebral disc, facet joints, and the numerous muscles and ligaments that actuate and guide motion at each vertebral level make doing so a considerable challenge (Holsgrove et al., 2015b; Jaumard et al., 2011).

There are many six-axis testing systems that have been used for the biomechanical testing of the spine (Chung et al., 2002; Ding et al., 2014; Holsgrove et al., 2014; Ilharreborde et al., 2010; Kelly and Bennett, 2013; Martinez et al., 2013; Stokes et al., 2002; Wilke et al., 1994; Wilke et al., 2016), however, the designs and control capabilities of those testing systems vary considerably. Additionally, despite previous studies having demonstrated the large changes in the mechanical properties of spinal specimens due to a preload (Gardner-Morse and Stokes, 2003; Holsgrove et al., 2015a; Panjabi et al., 2001; Tawackoli et al., 2004) and the method of preload application (Crippton et al., 2000), testing rate (Costi et al., 2008; Gay et al., 2008), and testing environment (Costi et al., 2002; Pflaster et al., 1997; Wilke et al., 1998a), the standardization of in vitro methods is still lacking, despite previous recommendations (Goel et al., 2006; Wilke et al., 1998b), which often makes it difficult, if not impossible, to compare different biomechanical studies (Holsgrove et al., 2015b).

Whilst a multi-center study has demonstrated that consistent results can be acquired in the pure moment testing of cadaveric specimens without a physiological preload (Wheeler et al., 2011),
there is limited data to compare multi-axis test systems with axial preloads applied to specimens, and there is no data in regard to a standard test method with which to compare different test systems. Therefore, the aim of this study was to use existing standards (British Standards Institution, 2009, 2012), and spine testing recommendations (Goel et al., 2006; Holsgrove et al., 2015b; Wilke et al., 1998b), to develop a standard multi-axis test protocol to compare different systems, using synthetic lumbar spinal motion segments. The protocol was then implemented on three systems, and the stiffness and phase angle data were used to establish acceptable stiffness and phase angle limits.

2. Materials and methods

Three multi-axis testing systems were used. One custom assembly (GT1) was capable of position or load control in six degrees of freedom (6DOF) using a gimbal head mounted on translational axes, with a load capacity of ±500 N in shear loading, ±4000 N in axial compression-tension, and ±35 Nm in all rotational axes (Holsgrove et al., 2017) (Fig. 1a). Another custom system (HEX) adopted a hexapod design based on the concept of the Stewart Platform, with six actuators linking the base and test platforms, which was also capable of position and load control in 6DOF (Lawless et al., 2014), with a load capacity of ±7.2 kN in shear, 18 kN in axial compression-extension, and 1.4 kNm in all rotational axes (Fig. 1b). The final system (GT2) was a commercially available dual axis MTS servo-hydraulic testing machine (370.02 FlexTest 60; MTS Systems Corp., Eden Prairie, MN, USA) combined with an MTS kinematic spine system (Bionix Spine Kinematics System; MTS Systems Corp.) to provide position or load control in four axes (axial compression-tension, flexion-extension, lateral bending, and axial rotation), with a custom dual platform of linear guide rails providing passive axes in anteroposterior and mediolateral translation (Fig. 1c). GT2 had a load capacity of 580 N in shear, 1160 N in axial compression-extension, and 20 Nm in all rotational axes. However, the load cell used for the control of the axial pre-load had a capacity of 22 kN. All three systems measured position directly from sensors mounted on the system load frames.

After completing all tests at on each system, the tests were repeated on the original system (GT1) to ensure that no damage had occurred to the specimens.

2.1. Synthetic specimen design

Six synthetic lumbar specimens were fabricated, allowing standardized comparisons to be made between different multi-axis systems. The synthetic specimen design (Fig. 2) was based on the only international standard for pre-clinical spine testing that describes spring-based anterior supports for the lumbar region of the spine, ISO 12189:2008 (British Standards Institution, 2009); the dimensions and mechanical properties of the springs used for the anterior support are outlined in ISO 10243:2010+A1:2011 (British Standards Institution, 2012).

The criterion of ISO 12189:2008 is limited to compression testing, where three heavy-duty die cast springs of Ø25 mm and 25 mm length are placed in circular recesses within each test block. However, in order to apply pure moments to the specimens, it was necessary to rigidly fix the springs at each end. This was accomplished by using springs with a length of 76 mm, and embedding each end in a two-part fast-curing liquid polymer (Smooth Cast® 300; Smooth-On, Inc.; Macungie, PA) using a potting jig (Fig. 2c) to ensure that the spacing and resulting free-length was 25 mm. Each spring had a stiffness of approximately 99 N/mm but once embedded with a free-length of 25 mm, the stiffness was expected to be approximately 375 N/mm (British Standards Institution, 2012), giving an overall specimen compressive stiffness of approximately 1125 N/mm.

The same six polymer/spring specimens were used for testing on all three systems. Additionally, the cylindrical part of the specimens, to which the specimens were fixed using radial screws, were used for testing of the specimens to ensure consistent fixation to each test system (Fig. 2d).

2.2. Test regime

Twelve tests (three loading directions × two waveforms × two preloads) were completed on each system. Pure moments of ±8 Nm were individually applied in flexion-extension, lateral bending, and axial rotation (ASTM International, 2011; Kelly and Bennett, 2013; Lawless et al., 2014) to the specimens on each system according to a standardized protocol (Table 1). All axes were tested first without a preload, and then with a 500 N axial preload (Costi et al., 2008; Cripton et al., 2000; Holsgrove et al., 2015a).

Fig. 1. The three multi-axis test systems of the present study. A custom system (GT1) comprising a gimbal and translation platform capable of 6DOF position or load control (a). A custom hexapod system (HEX) with six actuators linking the base and test platforms to provide 6DOF position or load control (b). A commercial servo-hydraulic test system (GT2) capable of position or load control in four axes, with a custom passive platform to minimize anteroposterior and mediolateral shear loads (c).
which was applied as a vertical vector. Pure moments were applied using both sine and triangle waveforms for each test condition at 0.1 Hz. The time, load and position data were acquired at 100 Hz for all tests. Five cycles were applied for each test, with the first two cycles used for preconditioning, and the last three used for data analysis (Holsgrove et al., 2015a; Holsgrove et al., 2017; Wilke et al., 1998b).

The coordinate system used was based on previous recommendations for spinal testing (Holsgrove et al., 2015b; Wilke et al., 1998b), with the x, y, and z axes corresponding to anterior shear, left lateral shear, and axial tension respectively (Fig. 2d). Prior to testing, the specimen pots were mounted on the test machine, and the loads were offset to zero. The specimen was then fixed into the test system with the geometric center aligned along the z axis. The datum of x and y axes was also adjusted to be at the geometrical center of the specimen in the GT1 and HEX; the axial position of the x and y axes was not adjustable on GT2.

Once positioned, the test system was set to load control with a zero set point in all six axes; in the case of GT2, the four active axes were operated in load control with a zero set point, and the passive axes in the anteroposterior and mediolateral directions were allowed to move freely to maintain minimal shear loading. The zero load condition was maintained for five minutes prior to commencing pure moment tests, which were completed in the order of flexion-extension, lateral bending, and axial rotation, with sine waves completed in all axes prior to the completion of triangle waves. Each test of five cycles took 50 s to complete, and a one minute recovery period was employed between each test. The axial preload of 500 N was then applied and equilibrated with all other axes maintained in the zero load condition for five minutes prior to repeating the pure moment tests using sine and triangle waves. The order of testing specimens was randomized at each institution.

2.3. Data analysis

The load data were adjusted to the geometrical center of the specimen using rigid body transformations. Transformation matrices were calculated based on position and angle of the load cell datum relative to the specimen center on each system during each test. These allowed the required translations and rotations of the load matrix to be completed, and the transformed load data were then used to calculate the stiffness, phase angle, R² value and tracking errors for each test. The stiffness in the test axis was calculated over the entire load-unload period of the last three cycles. Stiffness was calculated from the principal axis moment and rotation data using the linear least squares method, and the R² value was calculated to assess the linearity. The phase angle for the principal axis of each test was calculated between the input moment and measured rotation for the last three cycles using the cross spectral density estimate function (Matlab: CSD.m) to assess lag.
analyses were completed with a significance level of 0.05. All statistical comparisons were then compared without the repeat tests using the same system to assess agreement (Fig. 3), with no significant differences between any systems without a preload, or in axial rotation with a preload. There were small but significant differences in flexion-extension with a preload between systems GT1 and GT2 (p < 0.002 for sine waves; 0.003 for triangle waves). There were also small but significant differences between all systems in lateral bending with a preload: systems GT1 and GT2 (p = 0.002 for sine waves; 0.003 for triangle waves); systems GT1 and HEX (p = 0.001 for sine waves; 0.002 for triangle waves); and systems GT2 and HEX (p = 0.004 for sine waves; 0.012 for triangle waves). However, whilst significant differences were detected, the maximum percentage difference between systems was 13.14%, and the mean (standard deviation (SD)) difference was only 5.80(3.90)%. The R^2 values of the stiffness plots demonstrated that the stiffness was highly linear (Fig. 4), with mean (SD) R^2 values across all tests of 0.996(0.004) on GT1, 0.997(0.002) on GT2, and 0.995(0.002) on HEX.

The phase angle between the principal test axis moment and rotation (Fig. 5) varied more across systems than the stiffness, and also demonstrated differences in phase magnitude between axes of the same system (Fig. 5). GT1 had relatively low phase across all tests, and GT2 had an extremely low phase angle in lateral bending tests. The phase was significantly different between all test systems in all lateral bending tests (p < 0.013). In all flexion-extension tests, the phase of GT1 was significantly lower than GT2 (p < 0.012) and HEX (p < 0.010), but there were no differences between GT2 and HEX. In axial rotation tests with a 500 N preload, the phase of GT1 was significantly lower than GT2 using sine waves (p < 0.001), and significantly lower than GT2 and HEX using triangle waves (p < 0.036). There were significant differences in the tracking error between at least two systems in 32 of 36 comparisons (Table 2), despite all systems generally maintaining loads close to target set points. However, the axial tracking error was relatively high in all tests with GT2, but this was particularly true in flexion-extension tests. The axial force tracking error in HEX was also relatively high without a preload, and substantially higher than respective tests with an axial preload (Table 2).

4. Discussion

The aim of this study was to develop and implement a standardized testing protocol to compare multi-axis test systems. The synthetic lumbar spinal specimens were modified from the compression only configuration of the anterior support design of ISO 12189:2008 (British Standards Institution, 2009) by embedding the springs in a polymer, thus allowing a pure moment protocol. The tests on each system demonstrated that the use of standardized synthetic specimens led to a low variation in stiffness between specimens on each test system (interquartile range (IQR) within 14% of the median), though one specimen was substantially lower in stiffness than other specimens. That specimen had a stiffness of more than 3 times the IQR less than the median in 26 of the 36 tests completed (12 tests at three institutions); therefore, the specimen was regarded as an outlier and was not included in the data analysis. This exclusion reduced the maximum IQR across all tests to 12.4%.

There were no differences in the phase angle between the original tests on GT1 and the repeated tests completed after testing on all three systems. There was a significant difference in the stiffness of one repeated test (p = 0.004 for flexion-extension, with a 500 N preload, and a triangle wave), though the magnitude of change was extremely small, with a maximum change in specimen stiffness of only 0.05 Nm/°. The stiffness across test systems showed good agreement (Fig. 3), with no significant differences between any systems without a preload, or in axial rotation with a preload. The tests on each system demonstrated that the use of standardized synthetic specimens led to a low variation in stiffness between systems (IQR) within 14% of the median), though one specimen was identified as an outlier, which may have been caused by improper potting of the springs within the polymer. This outlier specimen was identified as the stiffness was more than three times the IQR less than the median stiffness in the majority of tests across all three systems. It is recommended that other institutions using similar specimens identify outliers using the same method.
The mean stiffness measured on the GT1 system was lower compared to GT2 and HEX without a preload, but higher with the axial preload of 500 N. This suggests that there was some system compliance without the axial load, which would also account for the increased hysteresis visible in lateral bending without a preload (Fig. 4b), compared to the test with a 500 N preload (Fig. 4e). The GT1 system comprises zero-backlash gears and couplings, but it is possible that there was some compliance in the gear assemblies or fixtures, which was eliminated through the application of the axial preload.

The relatively high axial load tracking error of GT2, and of HEX without a preload (Table 2) may be due to the respective load cell capacities of 22.0 kN and 18.0 kN used to control the axial load compared to that of 4.4 kN in GT1. This demonstrates that working close to the load cell capacity provides a control system advantage, though it is likely that some of the tracking error in HEX was also due to the backlash of the ball-screw actuators (Ding et al., 2015). The moving mass of HEX is also higher than the GT1 or GT2 systems, which increases the difficulty to maintain low tracking error in dynamic loading conditions, and may account for the increased...
magnitude and variation in the phase angle with this system (Fig. 5). However, it should be noted that the phase angle results across all systems was low, with mean (SD) phase angles across all tests of 1.34(0.73)/C176, 2.08(1.50)/C176, and 2.39(0.65)/C176 for GT1, GT2, and HEX respectively; this is result of the test specimen exhibiting elastic behavior, without the viscoelasticity or damping that would be present in a biological spine specimen. The tracking error of HEX was also higher than GT1 and GT2 in many comparisons (Table 3), and this is likely due to the system complexity, which requires that all six actuators move in order to apply movement in a single anatomical plane. However, this complexity also provides greater flexibility in applying complex loads. The tuning of such systems is also a critical factor in maintaining desired loads at physiological loading rates, though a variety of methods were employed in the present study: manual tuning (GT1); auto-tuning (GT2); and adaptive tuning (HEX) (Lawless et al., 2014).

The ability to adjust the coordinate system relating to the application of loading with both GT1 and HEX meant that the initial center of rotation could be positioned at the geometric center of the specimen. This, combined with the orientation of the load cell of GT1 being the same as the specimen center, enabled the shear loads to be maintained close to the zero set point in all tests on this system (Table 2). Such adjustments were not possible with GT2, leading to relatively large translations of the XY platform during

Table 2
The mean (SD) RMS tracking error of non-principal moments, shear forces, and axial force for each system in flexion-extension, lateral bending, and axial rotation. Statistical significance (p < 0.05) is denoted for comparisons between each system for each test condition: *GT1 and GT2; ^GT1 and HEX; +GT2 and HEX.

<table>
<thead>
<tr>
<th></th>
<th>Flexion-extension</th>
<th>Lateral bending</th>
<th>Axial rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-principal moments (Nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion-extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>500 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>GT1</td>
<td>0.10(0.01)</td>
<td>0.09(0.01)</td>
<td></td>
</tr>
<tr>
<td>GT2</td>
<td>0.19(0.06)</td>
<td>0.22(0.02)</td>
<td></td>
</tr>
<tr>
<td>HEX</td>
<td>0.29(0.02)</td>
<td>0.27(0.03)</td>
<td></td>
</tr>
<tr>
<td>Lateral bending</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>500 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>GT1</td>
<td>0.62(0.06)</td>
<td>0.61(0.05)</td>
<td></td>
</tr>
<tr>
<td>GT2</td>
<td>0.63(0.08)</td>
<td>0.65(0.03)</td>
<td></td>
</tr>
<tr>
<td>HEX</td>
<td>0.61(0.03)</td>
<td>0.65(0.03)</td>
<td></td>
</tr>
<tr>
<td>Axial rotation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>500 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>GT1</td>
<td>1.60(0.08)</td>
<td>1.70(0.08)</td>
<td></td>
</tr>
<tr>
<td>GT2</td>
<td>1.58(0.06)</td>
<td>1.63(0.08)</td>
<td></td>
</tr>
<tr>
<td>HEX</td>
<td>1.51(0.36)</td>
<td>1.56(0.32)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shear forces (N)</th>
<th>Flexion-extension</th>
<th>Lateral bending</th>
<th>Axial rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion-extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>500 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>GT1</td>
<td>8.49(0.86)</td>
<td>8.88(0.75)</td>
<td></td>
</tr>
<tr>
<td>GT2</td>
<td>8.32(0.88)</td>
<td>4.24(0.57)</td>
<td></td>
</tr>
<tr>
<td>HEX</td>
<td>9.67(1.53)</td>
<td>9.77(2.38)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Axial force (N)</th>
<th>Flexion-extension</th>
<th>Lateral bending</th>
<th>Axial rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion-extension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>500 N</td>
<td>Sin^* Tri^*</td>
<td>Sin Tri</td>
<td></td>
</tr>
<tr>
<td>GT1</td>
<td>1.38(0.10)</td>
<td>1.33(0.08)</td>
<td></td>
</tr>
<tr>
<td>GT2</td>
<td>22.1(13.9)</td>
<td>44.8(27.2)</td>
<td></td>
</tr>
<tr>
<td>HEX</td>
<td>27.6(3.18)</td>
<td>25.0(2.75)</td>
<td></td>
</tr>
</tbody>
</table>
flexion-extension, and lateral bending tests. It is likely that this altered the load transfer through the specimen, which may have contributed to the relatively high axial force tracking errors in flexion-extension and lateral bending with the 500 N preload compared to the same tests without a preload (Table 2).

The stiffness and phase results were consistent between the sine and triangle waveforms, suggesting that it may not be necessary to use both waveforms in future tests that adopt the standardized protocol. Sine waveforms are commonly used in spine testing to simplify test control, and approximate physiologic motion (Amin et al., 2015; Chamoli et al., 2015; Costi et al., 2008; Wilke et al., 2016), though triangle waves have also been adopted in position controlled tests to ensure a uniform test rate (Bennett and Kelly, 2013; Gardner-Morse and Stokes, 2004; Holsgrove et al., 2015a; Kotani et al., 2006). However, triangle waveforms may be less applicable in load control testing where the test rate will vary according to the stiffness of the specimen.

A key aspect of the comparisons of the present study was to transform the loads from the load cell datum to the geometric center of each specimen with a common orientation of coordinate system. This is an important step due to the different designs of GT1, GT2, and HEX, and the different locations of the load cell relative to the specimen. Previous studies investigating the stiffness matrices of single-level spinal specimens have used similar methods to transform load data to the center of the superior vertebral body (Holsgrove et al., 2015a; Stokes and Gardner-Morse, 2003; Chamoli et al., 2015; Amin et al., 2015; Costi et al., 2008; Wilke et al., 1998b) and demonstrates that by adopting a standardized pure moment testing protocol, the results of different multi-axis test systems can produce consistent stiffness measurements. However, the standardization must extend not only to the testing, but also to the rigid body transformation of the data. The data of the present study suggest that shear loading can be adequately maintained within ±10 N using either the passive XY platform or active control, and non-principal moments can generally be maintained within ±0.5 Nm.

The present study builds upon previous recommendations to standardize in vitro spine testing (Goel et al., 2006; Holsgrove et al., 2015b; Wilke et al., 1998b) and demonstrates that by adopting a standardized pure moment testing protocol, the results of different multi-axis test systems can produce consistent stiffness measurements. However, the standardization must extend not only to the testing, but also to the rigid body transformation of loads, so that the stiffness is measured at a common position and orientation. This approach has led to recommended stiffness and phase angle limits measured at the center of standardized spring specimens. The testing protocol of the present study can be adopted by other research institutions to ensure equivalence of different multi-axis spine systems, which through the increased ability to compare in vitro tests, will benefit the spinal community as a whole.

Acknowledgements

This research was completed with the support of the Catherine Sharpe Foundation, the Enid Linder Foundation, and the University of Bath Alumni Fund.

Conflict of interest

The authors declare that they have no conflicts of interest.
References

